Optimal Cooperative Routing Protocol for Efficient In-Network Cache Management in Content-Centric Networks

2014 ◽  
Vol E97.B (12) ◽  
pp. 2627-2640
Author(s):  
Saran TARNOI ◽  
Wuttipong KUMWILAISAK ◽  
Yusheng JI
Author(s):  
Suha Sahib Oleiwi ◽  
Ghassan N. Mohammed ◽  
Israa Al_Barazanchi

The wireless body area network (WBAN) has been proposed to offer a solution to the problem of population ageing, shortage in medical facilities and different chronic diseases. The development of this technology has been further fueled by the demand for real-time application for monitoring these cases in networks. The integrity of communication is constrained by the loss of packets during communication affecting the reliability of WBAN. Mitigating the loss of packets and ensuring the performance of the network is a challenging task that has sparked numerous studies over the years. The WBAN technology as a problem of reducing network lifetime; thus, in this paper, we utilize cooperative routing protocol (CRP) to improve package delivery via end-to-end latency and increase the length of the network lifetime. The end-to-end latency was used as a metric to determine the significance of CRP in WBAN routing protocols. The CRP increased the rate of transmission of packets to the sink and mitigate packet loss. The proposed solution has shown that the end-to-end delay in the WBAN is considerably reduced by applying the cooperative routing protocol. The CRP technique attained a delivery ratio of 0.8176 compared to 0.8118 when transmitting packets in WBAN.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Sheeraz Ahmed ◽  
Nadeem Javaid ◽  
Ashfaq Ahmad ◽  
Imran Ahmed ◽  
Mehr Yahya Durrani ◽  
...  

Reliability is a key factor for application-oriented Underwater Sensor Networks (UWSNs) which are utilized for gaining certain objectives and a demand always exists for efficient data routing mechanisms. Cooperative routing is a promising technique which utilizes the broadcast feature of wireless medium and forwards data with cooperation using sensor nodes as relays. Here, we present a cooperation-based routing protocol for underwater networks to enhance their performance called Stochastic Performance Analysis with Reliability and Cooperation (SPARCO). Cooperative communication is explored in order to design an energy-efficient routing scheme for UWSNs. Each node of the network is assumed to be consisting of a single omnidirectional antenna and multiple nodes cooperatively forward their transmissions taking advantage of spatial diversity to reduce energy consumption. Both multihop and single-hop schemes are exploited which contribute to lowering of path-losses present in the channels connecting nodes and forwarding of data. Simulations demonstrate that SPARCO protocol functions better regarding end-to-end delay, network lifetime, and energy consumption comparative to noncooperative routing protocol—improved Adaptive Mobility of Courier nodes in Threshold-optimized Depth-based routing (iAMCTD). The performance is also compared with three cooperation-based routing protocols for UWSN: Cognitive Cooperation (Cog-Coop), Cooperative Depth-Based Routing (CoDBR), and Cooperative Partner Node Selection Criteria for Cooperative Routing (Coop Re and dth).


2015 ◽  
Vol 35 ◽  
pp. 386-397 ◽  
Author(s):  
Shalli Rani ◽  
Jyoteesh Malhotra ◽  
Rajneesh Talwar

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Sheeraz Ahmed ◽  
Malik Taimur Ali ◽  
Asma A. Alothman ◽  
Asif Nawaz ◽  
M. Shahzad ◽  
...  

The harsh testing environments of underwater scenarios make it extremely hard to plan a reasonable routing protocol for Underwater Sensor Networks (UWSNs). The main challenge in UWSNs is energy confinement. It is needed to plan an energy effective scheme which increases the life span of the network and also reduces the energy usage in data transfer from supplier to sink. In this research, we present the design of a routing protocol known as Energy Harvesting in UWSN (EH-UWSN). EH-UWSN is a compact, energy efficient, and high throughput routing protocol, in which we present utilization of energy gaining with coordinating transfer of data packets through relay nodes. Through Energy Harvesting, the nodes are capable to recharge their batteries from the outside surrounding with the ultimate objective to improve the time span of network and proceed data through cooperation, along with restricting energy usage. At the sink node, the mixing plan applied is centered on Signal-to-Noise Ratio Combination (SNRC). Outcomes of EH-UWSN procedure reveal good results in terms of usage of energy, throughput, and network life span in comparing with our previous Cooperative Routing Scheme for UWSNs (Co-UWSN). Simulation results show that EH-UWSN has consumed considerably lesser energy when compared with Co-UWSN along with extending network lifetime and higher throughput at the destination.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 100036-100050 ◽  
Author(s):  
Zahid Ullah ◽  
Imran Ahmed ◽  
Fakhri Alam Khan ◽  
Muhammad Asif ◽  
Muhammad Nawaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document