High-Temperature Operation of Photonic-Crystal Lasers for On-Chip Optical Interconnection

2012 ◽  
Vol E95.C (7) ◽  
pp. 1244-1251 ◽  
Author(s):  
Koji TAKEDA ◽  
Tomonari SATO ◽  
Takaaki KAKITSUKA ◽  
Akihiko SHINYA ◽  
Kengo NOZAKI ◽  
...  
Author(s):  
T. Sato ◽  
K. Takeda ◽  
A. Shinya ◽  
K. Nozaki ◽  
H. Taniyama ◽  
...  

2014 ◽  
Vol 22 (S7) ◽  
pp. A1895 ◽  
Author(s):  
Veronika Rinnerbauer ◽  
Yichen Shen ◽  
John D. Joannopoulos ◽  
Marin Soljačić ◽  
Friedrich Schäffler ◽  
...  

Alloy Digest ◽  
2008 ◽  
Vol 57 (6) ◽  

Abstract Kubota UCX was developed for very high temperature operation for ethylene pyrolysis service. The alloy also has excellent oxidation and corrosion resistance. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting and joining. Filing Code: Ni-663. Producer or source: Kubota Metal Corporation, Fahramet Division.


Nanophotonics ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 2377-2385 ◽  
Author(s):  
Zhao Cheng ◽  
Xiaolong Zhu ◽  
Michael Galili ◽  
Lars Hagedorn Frandsen ◽  
Hao Hu ◽  
...  

AbstractGraphene has been widely used in silicon-based optical modulators for its ultra-broadband light absorption and ultrafast optoelectronic response. By incorporating graphene and slow-light silicon photonic crystal waveguide (PhCW), here we propose and experimentally demonstrate a unique double-layer graphene electro-absorption modulator in telecommunication applications. The modulator exhibits a modulation depth of 0.5 dB/μm with a bandwidth of 13.6 GHz, while graphene coverage length is only 1.2 μm in simulations. We also fabricated the graphene modulator on silicon platform, and the device achieved a modulation bandwidth at 12 GHz. The proposed graphene-PhCW modulator may have potentials in the applications of on-chip interconnections.


2021 ◽  
Vol 11 (10) ◽  
pp. 4635
Author(s):  
Marcel Ulrich Ahrens ◽  
Maximilian Loth ◽  
Ignat Tolstorebrov ◽  
Armin Hafner ◽  
Stephan Kabelac ◽  
...  

Decarbonization of the industrial sector is one of the most important keys to reducing global warming. Energy demands and associated emissions in the industrial sector are continuously increasing. The utilization of high temperature heat pumps (HTHPs) operating with natural fluids presents an environmentally friendly solution with great potential to increase energy efficiency and reduce emissions in industrial processes. Ammonia-water absorption–compression heat pumps (ACHPs) combine the technologies of an absorption and vapor compression heat pump using a zeotropic mixture of ammonia and water as working fluid. The given characteristics, such as the ability to achieve high sink temperatures with comparably large temperature lifts and high coefficient of performance (COP) make the ACHP interesting for utilization in various industrial high temperature applications. This work reviews the state of technology and identifies existing challenges based on conducted experimental investigations. In this context, 23 references with capacities ranging from 1.4 kW to 4500 kW are evaluated, achieving sink outlet temperatures from 45 °C to 115 °C and COPs from 1.4 to 11.3. Existing challenges are identified for the compressor concerning discharge temperature and lubrication, for the absorber and desorber design for operation and liquid–vapor mixing and distribution and the choice of solution pump. Recent developments and promising solutions are then highlighted and presented in a comprehensive overview. Finally, future trends for further studies are discussed. The purpose of this study is to serve as a starting point for further research by connecting theoretical approaches, possible solutions and experimental results as a resource for further developments of ammonia-water ACHP systems at high temperature operation.


2021 ◽  
Author(s):  
Viktoriia Mishukova ◽  
Nicolas Boulanger ◽  
Artem Iakunkov ◽  
Szymon Sollami Delekta ◽  
Xiaodong Zhuang ◽  
...  

Many industry applications require electronic circuits and systems to operate at high temperature over 150 oC. Although planar microsupercapacitors (MSCs) have great potential for miniaturized on-chip integrated energy storage components,...


Author(s):  
Weihong Shen ◽  
Jiangbing Du ◽  
Ke Xu ◽  
Zuyuan He

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Rostamian ◽  
Ehsan Madadi-Kandjani ◽  
Hamed Dalir ◽  
Volker J. Sorger ◽  
Ray T. Chen

Abstract Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to use such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index of n g  = 73 and a strong localization of modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when combined with integrated with quantum cascade laser and detectors.


Sign in / Sign up

Export Citation Format

Share Document