Optimal Construction of Access Rate to Superior Channel in Rendezvous Channel Based on Channel-Occupancy Ratio

Author(s):  
Yuki NISHIO ◽  
Osamu TAKYU ◽  
Hayato SOYA ◽  
Keiichiro SHIRAI ◽  
Mai OHTA ◽  
...  
2012 ◽  
Vol E95-B (4) ◽  
pp. 1076-1084 ◽  
Author(s):  
Janne J. LEHTOMÄKI ◽  
Risto VUOHTONIEMI ◽  
Kenta UMEBAYASHI ◽  
Juha-Pekka MÄKELÄ

Author(s):  
Sima Ajdar qizi Askerova

Monitoring of sea water condition is one of major requirements for carrying out the reliable ecological control of water environment. Monitoring networks contain such elements as sea buoys, beacons, etc. and are designated for measuringvarious hydrophysical parameters, including salinity of sea water. Development of specialized network and a separate buoy system for measuring thesea water salinity at different depths makes it possible to determine major regularities of processes of pollution and self-recovery of the sea waters. The article describes the scientific and methodological basics for development of this specialized network and questions of its optimal construction. It is well-known that at a depth of 30-45 m of the Caspian Sea salinity decreases and then at a depth of 45-60 m salinity is fully recovered. The mentioned changes of salinity at the relatively upper layer of sea waters is of special interest for studying the effect of ocean-going processes on the climate forming in the Caspian area. In terms of informativeness of measurements of surface waters salinity, the most informative is a layer ata 30-60 m depth, where inversion and recovery of salinity take place. It is shown that in most informative subrange of measurements, i. e. at a depth of 30-60 m optimization of regime of measurements complex should be carried out in order to increase the effectiveness of held researches. It is shown that at a depth of 35-50 m choice of the optimum regime of measurements makes it possible to obtain the maximum amount of information.


Author(s):  
Tadayuki Fukuhara ◽  
Akira Yamaguchi ◽  
Kanshiro Kashiki ◽  
Toshinori Suzuki ◽  
Kazunori Takeuchi

Author(s):  
Gautam Kumar ◽  
Seul Ah Kim ◽  
ShiNung Ching

The induction of particular brain dynamics via neural pharmacology involves the selection of particular agonists from among a class of candidate drugs and the dosing of the selected drugs according to a temporal schedule. Such a problem is made nontrivial due to the array of synergistic drugs available to practitioners whose use, in some cases, may risk the creation of dose-dependent effects that significantly deviate from the desired outcome. Here, we develop an expanded pharmacodynamic (PD) modeling paradigm and show how it can facilitate optimal construction of pharmacologic regimens, i.e., drug selection and dose schedules. The key feature of the design method is the explicit dynamical-system based modeling of how a drug binds to its molecular targets. In this framework, a particular combination of drugs creates a time-varying trajectory in a multidimensional molecular/receptor target space, subsets of which correspond to different behavioral phenotypes. By embedding this model in optimal control theory, we show how qualitatively different dosing strategies can be synthesized depending on the particular objective function considered.


2021 ◽  
Vol 13 (21) ◽  
pp. 12173
Author(s):  
Borna Dasović ◽  
Uroš Klanšek

This paper presents the integration of mixed-integer nonlinear program (MINLP) and project management tool (PMT) to support sustainable cost-optimal construction scheduling. An integrated structure of a high-level system for exact optimization and PMT was created. To ensure data compatibility between the optimization system and PMT and to automate the process of obtaining a cost-optimal schedule, a data transformation tool (DTT) was developed within a spreadsheet application. The suggested system can determine: (i) an optimal project schedule with associated network diagram and Gantt chart in continuous or discrete time units; (ii) optimal critical and non-critical activities, including their early start, late start, early finish, late finish along with total and free slack times; and (iii) minimum total project cost along with the allocation of direct and indirect costs. The system provides functionalities such as: (i) MINLP can be updated, and schedules can be re-optimized; (ii) the optimal schedule can be saved as a baseline to track changes; (iii) different optimization algorithms can be engaged whereby switching between them does not require model changes; (iv) PMT can be used to track task completion in the optimized schedule; (v) calendar settings can be changed; and (vi) visual reports can be generated to support efficient project management. Results of cost-optimal project scheduling are given in a conventional PMT environment, which raises the possibility that the proposed system will be more widely used in practice. Integration of MINLP and PMT allows each software to be used for what it was initially designed. Their combination leads to additional information and features of optimized construction schedules that would be significantly more difficult to achieve if used separately. Application examples are given in the paper to show the advantages of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document