scholarly journals Variation of Weight Bearing Rate on the Lower Limb with Walking Independence Level of Stroke Patients

2014 ◽  
Vol 29 (2) ◽  
pp. 189-192
Author(s):  
Keisuke ITOTANI ◽  
Motoko ITOTANI ◽  
Miki IWAMOTO ◽  
Junichi KATO ◽  
Hiroshi ANDO
2021 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Kara B. Bellenfant ◽  
Gracie L. Robbins ◽  
Rebecca R. Rogers ◽  
Thomas J. Kopec ◽  
Christopher G. Ballmann

The purpose of this study was to investigate the effects of how limb dominance and joint immobilization alter markers of physical demand and muscle activation during ambulation with axillary crutches. In a crossover, counterbalanced study design, physically active females completed ambulation trials with three conditions: (1) bipedal walking (BW), (2) axillary crutch ambulation with their dominant limb (DOM), and (3) axillary crutch ambulation with their nondominant limb (NDOM). During the axillary crutch ambulation conditions, the non-weight-bearing knee joint was immobilized at a 30-degree flexion angle with a postoperative knee stabilizer. For each trial/condition, participants ambulated at 0.6, 0.8, and 1.0 mph for five minutes at each speed. Heart rate (HR) and rate of perceived exertion (RPE) were monitored throughout. Surface electromyography (sEMG) was used to record muscle activation of the medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) unilaterally on the weight-bearing limb. Biceps brachii (BB) and triceps brachii (TB) sEMG were measured bilaterally. sEMG signals for each immobilization condition were normalized to corresponding values for BW.HR (p < 0.001) and RPE (p < 0.001) were significantly higher for both the DOM and NDOM conditions compared to BW but no differences existed between the DOM and NDOM conditions (p > 0.05). No differences in lower limb muscle activation were noted for any muscles between the DOM and NDOM conditions (p > 0.05). Regardless of condition, BB activation ipsilateral to the ambulating limb was significantly lower during 0.6 mph (p = 0.005) and 0.8 mph (p = 0.016) compared to the same speeds for BB on the contralateral side. Contralateral TB activation was significantly higher during 0.6 mph compared to 0.8 mph (p = 0.009) and 1.0 mph (p = 0.029) irrespective of condition. In conclusion, limb dominance appears to not alter lower limb muscle activation and walking intensity while using axillary crutches. However, upper limb muscle activation was asymmetrical during axillary crutch use and largely dependent on speed. These results suggest that functional asymmetry may exist in upper limbs but not lower limbs during assistive device supported ambulation.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Sota Araki ◽  
Masayuki Kawada ◽  
Takasuke Miyazaki ◽  
Yuki Nakai ◽  
Yasufumi Takeshita ◽  
...  

Many stroke patients rely on cane or ankle-foot orthosis during gait rehabilitation. The purpose of this study was to investigate the immediate effect of functional electrical stimulation (FES) to the gluteus medius (GMed) and tibialis anterior (TA) on gait performance in stroke patients, including those who needed assistive devices. Fourteen stroke patients were enrolled in this study (mean poststroke duration: 194.9 ± 189.6   d ; mean age: 72.8 ± 10.7   y ). Participants walked 14 m at a comfortable velocity with and without FES to the GMed and TA. After an adaptation period, lower-limb motion was measured using magnetic inertial measurement units attached to the pelvis and the lower limb of the affected side. Motion range of angle of the affected thigh and shank segments in the sagittal plane, motion range of the affected hip and knee extension-flexion angle, step time, and stride time were calculated from inertial measurement units during the middle ten walking strides. Gait velocity, cadence, and stride length were also calculated. These gait indicators, both with and without FES, were compared. Gait velocity was significantly faster with FES ( p = 0.035 ). Similarly, stride length and motion range of the shank of the affected side were significantly greater with FES (stride length: p = 0.018 ; motion range of the shank: p = 0.02 6). Meanwhile, cadence showed no significant difference ( p = 0.238 ) in gait with or without FES. Similarly, range of motion of the affected hip joint, knee joint, and thigh did not differ significantly depending on FES condition ( p = 0.115 ‐ 0.529 ). FES to the GMed and TA during gait produced an improvement in gait velocity, stride length, and motion range of the shank. Our results will allow therapists to use FES on stroke patients with varying conditions.


2008 ◽  
Vol 23 (2) ◽  
pp. 301-305 ◽  
Author(s):  
Yoshiteru AKEZAKI ◽  
Hiroshi YAMASAKI ◽  
Takuo NOMURA ◽  
Yoshinobu YOSHIMOTO ◽  
Susumu YOSHIMURA ◽  
...  

2005 ◽  
Vol 86 (9) ◽  
pp. 1860-1866 ◽  
Author(s):  
Denise C. Hill ◽  
Karen D. Ethans ◽  
Don A. MacLeod ◽  
Edmund R. Harrison ◽  
Jane E. Matheson

2014 ◽  
Vol 14 (06) ◽  
pp. 1440004 ◽  
Author(s):  
SHUAI GUO ◽  
JIANCHENG JI ◽  
GUANGWEI MA ◽  
TAO SONG ◽  
JING WANG

After analyzing the rehabilitation needs of stroke patients and the previous studies on lower limb rehabilitation robot, our lower limb rehabilitation robot is designed for stroke patients' gait and balance training. The robot consists of the mobile chassis, the support column and the pelvis mechanism and it is described in detail. As the pelvis mechanism allows most of the patient's motion degrees of freedom (DOFs), the kinematics model of the mechanism is set up, and kinematics simulation is carried out to study the motion characteristics of the mechanism. After analyzing the calculation and simulation results, the pelvis mechanism is proven to measure up to the movement needs of the paralytic's waist and pelvis in walking rehabilitation process.


1995 ◽  
Vol 79 (1) ◽  
pp. 168-175 ◽  
Author(s):  
L. L. Ploutz-Snyder ◽  
P. A. Tesch ◽  
D. J. Crittenden ◽  
G. A. Dudley

Exercise-induced spin-spin relaxation time (T2) shifts in magnetic resonance (MR) images were used to test the hypothesis that more muscle would be used to perform a given submaximal task after 5 wk of unweighting. Before and after unilateral lower limb suspension (ULLS), 7 subjects performed 5 sets of 10 unilateral concentric actions with the quadriceps femoris muscle group (QF) at each of 4 loads: 25, 40, 55, and 70% of maximum. T2-weighted MR images of the thigh were collected at rest and after each relative load. ULLS elicited a 20% decrease in strength of the left unweighted QF and a 14% decrease in average cross-sectional area (CSA) with no changes in the right weight-bearing QF. Average CSA of the left or right QF showing exercise-induced T2 shift increased as a function of exercise intensity both before and after ULLS. On average, 12 +/- 1, 15 +/- 2, 18 +/- 2, and 22 +/- 1 cm2 of either QF showed elevated T2 for the 25, 40, 55, and 70% loads, respectively, before ULLS. Average CSA of the left but not the right QF, showing elevated T2 after ULLS, was increased to 16 +/- 2, 23 +/- 3, 31 +/- 7, and 39 +/- 5 cm2, respectively. The results indicated that unweighting increased exercise-induced T2 shift in MR images, presumably due to greater muscle mass involvement in exercise after than before unweighting, suggesting a change in motor control.


2021 ◽  
Author(s):  
Rosa Cabanas-Valdés ◽  
Lidia Boix-Sala ◽  
Montserrat Grau-Pellicer ◽  
Juan Antonio Guzmán-Bernal ◽  
Fernanda Maria Caballero-Gómez ◽  
...  

Abstract BackgroundTrunk impairment produces disorders of motor control, balance, and gait that are correlated with increased risk of falls and reduced mobility in stroke survivors. This creates disability and dependency to perform their activities of daily living. Alterations in body alignment occur, requiring treatment strategies focused on improving the postural control. bearing. Core stability exercises (CSE) are a good strategy to improve local strength of trunk, dynamic sitting, standing balance, and gait. There is some evidence about its effectiveness but it is still necessary to run a large multicenter trial to ratify that existing evidence.MethodsThis is a single-blind multicenter randomized controlled trial. Two parallel groups are compared and both perform the same type of therapy. A control group (CG) (n=110) performs conventional physiotherapy (CP) (1 hour per session) focused on improving balance. An experimental group (EG) (n=110) performs CSE (30 minutes) in addition to CP (30 minutes) (1 hour/session in total). EG is divided in two subgroups, in which only half of patients (n=55) perform CSE plus transcutaneous electrical nerve stimulation (TENS). Primary outcome measures are dynamic sitting, assessed by Spanish-version of Trunk Impairment Scale and stepping, assessed by Brunel Balance Assessment. Secondary outcomes are postural control, assessed by Postural Assessment Scale for Stroke patients; standing balance and risk of fall assessed by Berg Balance Scale; gait speed by BTS G-Walk (accelerometer); rate of falls, lower-limb spasticity by Modified Ashworth Scale; activities of daily living by Barthel Index; and quality of life by EQ-5D-5L. These are evaluated at baseline (T0), at 3 weeks (T1), at 5 weeks -at the end of the intervention (T2), at 17 weeks (T3) and at 29 weeks (T4). Study duration per patient is 29 weeks (a 5-week intervention, followed by a 24-week post-intervention). DiscussionThe study will provide useful information on the short and long term effects of a physiotherapy rehabilitation program based on core stability exercises performed in subacute phase.Trial registrationClinicalTrials.gov Identifier NCT03975985. Data registration June 5th, 2019. Retrospectively registered. Date of registration in primary registry: June 5, 2019. Protocol version 1


Sign in / Sign up

Export Citation Format

Share Document