scholarly journals Isolation, fractionation and anticoagulant activity of a sulfated galactan extracted from the green algae Penicillus capitatus

2021 ◽  
Vol 51 (8) ◽  
Author(s):  
Thamyris Almeida Moreira ◽  
Bianca Barros da Costa ◽  
Regina Célia Alves Celestino ◽  
Caroline Nogueira Faria ◽  
Jéssica Lopes D’Dego Gianelli ◽  
...  

ABSTRACT: Marine algae are natural sources of macromolecules known as sulfated polysaccharides. This class of compounds has attracted the interest of Pharmaceutical Sciences due to its pharmacological anticoagulant, antiplatelet and antithrombotic properties. Therefore, this study evaluated the anticoagulant potential of sulfated polysaccharides extracted from the algae Penicillus capitatus. The extracted sulfated polysaccharides were purified, partially characterized and their anticoagulant activity was evaluated. The extraction process followed by ethanol precipitation resulted in five fractions. Among the analyzed fractions, F44 contained highest concentration of sulfated polysaccharides. After the purified fraction F23, F44 displayed in vitro anticoagulant activity in a time testing for activated partial thromboplastin time and prothrombin time. The preferential mechanism effect was based on interactions between thrombin and factor Xa. Additional studies on structure pharmacological are required to test the viability of the use of sulfated polysaccharides as therapeutic agents.

2009 ◽  
Vol 101 (05) ◽  
pp. 860-866 ◽  
Author(s):  
Thales Cipriani ◽  
Ana Helena Gracher ◽  
Lauro de Souza ◽  
Roberto Fonseca ◽  
Celso Belmiro ◽  
...  

SummaryEvaluated were the anticoagulant and antithrombotic activities, and bleeding effect of two chemically sulfated polysaccharides, obtained from citric pectin, with different average molar masses. Both low-molecular-weight (Pec-LWS, 3,600 g/mol) and high-molecular-weight sulfated pectins (Pec-HWS, 12,000 g/mol) had essentially the same structure, consisting of a (1→4)-linked α-D-GalpA chain with almost all its HO-2 and HO-3 groups substituted by sulfate. Both polysaccharides had anticoagulant activity in vitro, although Pec-HWS was a more potent anti-thrombotic agent in vivo, giving rise to total inhibition of venous thrombosis at a dose of 3.5 mg/kg body weight. Surprisingly, in contrast with heparin, Pec-HWS and Pec-LWS are able to directly inhibit α-thrombin and factor Xa by a mechanism independent of antithrombin (AT) and/or heparin co-factor II (HCII). Moreover, Pec-HWS provided a lower risk of bleeding than heparin at a dose of 100% effectiveness against venous thrombosis, indicating it to be a promising antithrombotic agent.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Xiaolin Chen ◽  
Shengfeng Yang ◽  
Jinxia Wang ◽  
Lin Song ◽  
Ronge Xing ◽  
...  

Sulfated polysaccharides (GSP) were isolated from the clonedGrateloupia filicinawhich was cultured in Jiaozhou Bay, Qingdao, China. The yield of GSP was 15.75%. The total sugar and sulfate were 40.90 and 19.89%, respectively. And the average molecular weight was 11.7 KDa. The results of neutral sugar analysis showed that GSP was mainly sulfated polysaccharides of galactose. The experiments for activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) anticoagulant assays in vitro indicated that GSP was a good potential anticoagulant. Therefore, this study supplied new thought for the clonedGrateloupia filicinaexploitation of high-value products.


1991 ◽  
Vol 66 (04) ◽  
pp. 453-458 ◽  
Author(s):  
John T Brandt

SummaryLupus anticoagulants (LAs) are antibodies which interfere with phospholipid-dependent procoagulant reactions. Their clinical importance is due to their apparent association with an increased risk of thrombo-embolic disease. To date there have been few assays for quantifying the specific activity of these antibodies in vitro and this has hampered attempts to purify and characterize these antibodies. Methods for determining phospholipid-dependent generation of thrombin and factor Xa are described. Isolated IgG fractions from 7 of 9 patients with LAs were found to reproducibly inhibit enzyme generation in these assay systems, permitting quantitative expression of inhibitor activity. Different patterns of inhibitory activity, based on the relative inhibition of thrombin and factor Xa generation, were found, further substantiating the known heterogeneity of these antibodies. These systems may prove helpful in further purification and characterization of LAs.


1988 ◽  
Vol 60 (02) ◽  
pp. 298-304 ◽  
Author(s):  
C A Mitchell ◽  
S M Kelemen ◽  
H H Salem

SummaryProtein S (PS) is a vitamin K-dependent anticoagulant that acts as a cofactor to activated protein C (APC). To date PS has not been shown to possess anticoagulant activity in the absence of APC.In this study, we have developed monoclonal antibody to protein S and used to purify the protein to homogeneity from plasma. Affinity purified protein S (PSM), although identical to the conventionally purified protein as judged by SDS-PAGE, had significant anticoagulant activity in the absence of APC when measured in a factor Xa recalcification time. Using SDS-PAGE we have demonstrated that prothrombin cleavage by factor X awas inhibited in the presence of PSM. Kinetic analysis of the reaction revealed that PSM competitively inhibited factor X amediated cleavage of prothrombin. PS preincubated with the monoclonal antibody, acquired similar anticoagulant properties. These results suggest that the interaction of the monoclonal antibody with PS results in an alteration in the protein exposing sites that mediate the observed anticoagulant effect. Support that the protein was altered was derived from the observation that PSM was eight fold more sensitive to cleavage by thrombin and human neutrophil elastase than conventionally purified protein S.These observations suggest that PS can be modified in vitro to a protein with APC-independent anticoagulant activity and raise the possibility that a similar alteration could occur in vivo through the binding protein S to a cellular or plasma protein.


1987 ◽  
Author(s):  
B Casu ◽  
L Marchese ◽  
A Naggi ◽  
G Torri ◽  
J Fareed ◽  
...  

In order to investigate the influence of charge distribution and chain length on the biological properties of sulfated polysaccharides, additional sulfate groups were introduced into the galactosaminoglycans, chondriotin sulfate and dermatan sulfate. Using a flexible method (with sulfuric acid and chlorosulfonic acid) for concurrent sulfation and controlled depolymerization, numerous products were obtained and characterized by chemical, enzymatic and nuclear magnetic resonance spectroscopic methods. The biologic actions of these products were profiled in both in vitro and in vivo assays for antithrombotic activity. Despite a weaker in vitro anticoagulant activity, low molecular weight over sulfated galactosaminoglycans produced significant dose-dependent antithrombotic actions in animal models which were similar to the actions observed with oversulfated low molecular weight heparins. These results suggest that a significant antithrombotic activity can be elicited through non-specific interactions of polysulfates with cellular and plasma components, and that clusters of sulfate groups such as the 4-6 disulfate group on D-galactosaminoglycan residues may be important for these interactions. Furthermore, these results, also suggest that supersulfation of glycosaminogly-cans results in products with biologic activity distinct from the native material.


1988 ◽  
Vol 255 (4) ◽  
pp. F781-F786 ◽  
Author(s):  
S. Adler

The effect of several glycosaminoglycans and sulfated polysaccharides on the growth of cultured rat glomerular visceral epithelial cells (GEC) was studied in vitro. Heparin, one preparation of heparan sulfate proteoglycan, dextran sulfate, and pentosan polysulfate significantly inhibited the growth of several GEC clones studied (36.0-77.1% inhibition at 100 micrograms/ml). Other glycosaminoglycans studied did not affect GEC growth. Growth inhibition by heparin was dose related and did not appear to reflect cytotoxicity. Heparins with high or low affinity for antithrombin inhibited growth to similar degrees. When heparin was fractionated into high- and low-anticoagulant activity fractions by physicochemical means the high activity fraction displayed significantly greater growth inhibition. The degree of growth inhibition significantly correlated with serum concentration in the media (r = 0.64; P less than 0.001). Removal of heparin binding factors from serum resulted in a loss of this correlation as well as less overall growth inhibition. These experiments suggest that interactions of GEC with heparan sulfates and other heparin-like molecules in the extracellular matrix may be important in the control of GEC growth.


1979 ◽  
Author(s):  
A.S. Bhargava ◽  
J. Heinick ◽  
Chr. Schöbel ◽  
P. Günzel

The anticoagulant effect of a new potent heparin preparation was compared with a commercially available heparin in vivo after intravenous application in beagle dogs. The anticoagulant activity was determined using thrombin time, activated partial thromboplastin time and whole blood clotting time after 5, 10 and 30 minutes of application. The relative potency of the new heparin preparation (Scherinq) was found to be 1.62 to 2.52 times higher than heparin used for comparison (150 USP units/mg, Dio-synth). The anticoagulant properties of both preparations were also studied in vitro using dog and human plasma. The relative potencies in vitro correlated well with those obtained in vivo. Further characterization with amidolytic method using chromogenic substrate for factor Xa and thrombin (S-2222 and S-2238 from KABI, Stockholm) showed that heparin (Schering) contains 243 to 378 USP units/raq depending upon the test systems used to assay the anticoagulation activity and in addition, proves the validity of the amidolytic method.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 217-217 ◽  
Author(s):  
Gernot Schabbauer ◽  
Rolf D. Frank ◽  
Todd Holscher ◽  
Yuichiro Sato ◽  
Michael Tencati ◽  
...  

Abstract Acute inflammatory diseases are often accompanied by coagulation activation leading to local thrombotic complications and disseminated intravascular coagulation. Recent studies support the concept of crosstalk between coagulation and inflammation. The synthetic pentasaccharide, fondaparinux, is a selective antithrombin-dependent inhibitor of coagulation factor Xa. In this study, we investigated the effect of fondaparinux in a lethal murine model of kidney ischemia-reperfusion (I/R) injury that is associated with coagulation and inflammation. Fondaparinux treatment of I/R-injured mice significantly reduced serum creatinine levels and increased survival from 0 to 44% compared with saline treated control mice. In contrast, depletion of fibrinogen with ancrod was not protective, suggesting that fondaparinux may have additional properties beyond its anticoagulant activity. Indeed, fondaparinux significantly reduced IL-6 and MIP-2 expression but did not reduce MCP-1 expression. Furthermore, fondaparinux significantly decreased neutrophil accumulation in the injured kidneys. Finally, we showed that fondaparinux reduced recruitment of neutrophils into the peritoneum in a model of acute peritonitis and inhibited the binding of U937 cells to P-selectin in vitro. Our data indicate that fondaparinux has both anticoagulant and anti-inflammatory activity reducing fibrin deposition and blocking the binding of inflammatory cells to activated endothelium. Fondaparinux may be useful in the treatment of acute inflammatory diseases.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4130-4130 ◽  
Author(s):  
Joseph M. Luettgen ◽  
Tracy A. Bozarth ◽  
Jeffrey M. Bozarth ◽  
Frank A. Barbera ◽  
Patrick Y. Lam ◽  
...  

Abstract Apixaban, previously known as BMS-562247, is a high affinity, highly selective, orally-active, reversible inhibitor of coagulation factor Xa (fXa), in clinical studies as a therapeutic agent for prevention and treatment of thromboembolic diseases. The in vitro characteristics of apixaban were evaluated in purified systems and in human blood from healthy volunteers. Detailed kinetic analysis of apixaban inhibition of human fXa showed that it is a readily reversible, potent and competitive inhibitor versus a synthetic tripeptide substrate with a Ki of 0.08 nM, an association rate of 2 × 107 M−1s−1and a dissociation half life of 3.4 min. Weak affinity (Ki ~3 μM) is observed for thrombin, plasma kallikrein, and chymotrypsin. Affinity for trypsin and all other serine proteases tested is negligible with Ki > 15 μM. Apixaban is an effective inhibitor of free fXa and of prothrombinase, in buffer, platelet poor plasma, and whole blood. The anticoagulant activity of apixaban was determined in platelet-poor human plasma. Apixaban causes concentration dependent prolongation of the fXa mediated clotting assays. The human plasma concentration required to produce a doubling of the clotting time is 3.6 μM for prothrombin time, 7.4 μM for activated partial thromboplastin time and 0.4 μM for HepTest. To support preclinical efficacy and safety studies purified fXa from rabbit, dog and rat plasma was also found to be inhibited by apixaban (0.17, 2.6, and 1.3 nM, respectively). In summary the in vitro properties of apixaban show that it is a highly selective and potentially potent antithrombotic agent for venous and arterial thrombotic diseases.


1986 ◽  
Vol 55 (03) ◽  
pp. 342-346 ◽  
Author(s):  
M Andrew ◽  
F Ofosu ◽  
F Fernandez ◽  
A Jefferies ◽  
J Hirsh ◽  
...  

SummaryStandard heparin and a LMWH, CY222 do not cross the placenta nor alter fetal coagulation when injected into the pregnant ewe. We found that another LMWH, Pharmuka-10169 (PK-10169) alters fetal coagulation without crossing the placenta in the pregnant sheep. To characterize this anticoagulant we measured the in vitro and in vivo effects of 125I-PK-10169 in maternal and fetal plasmas following administration of PK-10169 to the mother or fetus. The fetal anticoagulant activity was not neutralizable by protamine sulphate and was attributable to the inhibition of thrombin but not factor Xa. In vitro, the fetal anticoagulant activity had properties similar to dermatan sulphate : both catalyzed the inhibition of thrombin but not factor Xa by sheep plasma; and neither was neutralizable by protamine sulphate. These effects were due to the enhanced neutralization of thrombin by heparin cofactor II. We conclude that PK-10169 does not cross the placenta, but does induce the release of an endogenous dermatan sulphate-like substance which alters fetal coagulation.


Sign in / Sign up

Export Citation Format

Share Document