scholarly journals Modeling non-ideal velocity of detonation in rock blasting

2020 ◽  
Vol 73 (3) ◽  
pp. 371-378
Author(s):  
Paulo Couceiro
Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 29
Author(s):  
Mahdi Shadabfar ◽  
Cagri Gokdemir ◽  
Mingliang Zhou ◽  
Hadi Kordestani ◽  
Edmond V. Muho

This paper presents a review of the existing models for the estimation of explosion-induced crushed and cracked zones. The control of these zones is of utmost importance in the rock explosion design, since it aims at optimizing the fragmentation and, as a result, minimizing the fine grain production and recovery cycle. Moreover, this optimization can reduce the damage beyond the set border and align the excavation plan with the geometric design. The models are categorized into three groups based on the approach, i.e., analytical, numerical, and experimental approaches, and for each group, the relevant studies are classified and presented in a comprehensive manner. More specifically, in the analytical methods, the assumptions and results are described and discussed in order to provide a useful reference to judge the applicability of each model. Considering the numerical models, all commonly-used algorithms along with the simulation details and the influential parameters are reported and discussed. Finally, considering the experimental models, the emphasis is given here on presenting the most practical and widely employed laboratory models. The empirical equations derived from the models and their applications are examined in detail. In the Discussion section, the most common methods are selected and used to estimate the damage size of 13 case study problems. The results are then utilized to compare the accuracy and applicability of each selected method. Furthermore, the probabilistic analysis of the explosion-induced failure is reviewed using several structural reliability models. The selection, classification, and discussion of the models presented in this paper can be used as a reference in real engineering projects.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Donghui Yang ◽  
Yixin Zhao ◽  
Zhangxuan Ning ◽  
Zhaoheng Lv ◽  
Huafeng Luo

Drilling and blasting technology is one of the main methods for pressure relief in deep mining. The traditional method for blasting hole blockage with clay stemming has many problems, which include a large volume of transportation, excess loading time, and high labor intensity. An environmentally friendly blast hole plug was designed and developed. This method is cheap, closely blocks the hole, is quickly loaded, and is convenient for transportation. The impact test on the plug was carried out using an improved split Hopkinson pressure bar test system, and the industrial test was carried out in underground tunnel of coal mine. The tests results showed that, compared with clay stemming, the new method proposed in this paper could prolong the action time of the detonation gas, prevent premature detonation gas emissions, reduce the unit consumption of explosives, improve the utilization ratio, reduce the labor intensity of workers, and improve the effect of rock blasting with low cost of rock breaking.


2015 ◽  
Vol 830-831 ◽  
pp. 306-309
Author(s):  
Niraj Srivastava ◽  
Abhishek Upadhyay ◽  
Sandeep Kumar ◽  
Diva ◽  
Jaspreet Singh ◽  
...  

This paper explains the technique of explosive welding for joining SS304 and Al 6061 using Copper interlayer. The joining was done in two stages. In the first stage SS304 (thickness: 20 mm) was joined to Copper (thickness: 3mm). Second stage involved joining of SS-Cu plate to Al 6061 (thickness: 8 mm).The paper presents detailed discussion on important parameters required for explosive welded process. The most important parameter is minimum and maximum flyer plate velocity required for creating the impact. Collision angle and angle of impact are also discussed. Another important parameter is the Velocity of detonation (VOD) of explosive to be used. The explosives used have VOD of the order of 2500 m/s and 1600 m/sec. Since the explosive welding process involves formation of jet between two surface, therefore surface conditions of the base and flyer plate like its flatness, roughness and cleanliness which are very critical for proper joining have been discussed in this paper. Chisel test (which is considered to be most rugged test) was conducted on the joint. The test confirmed successful joining.The paper explains how use of trimonite expands the weldability window in comparison to NGU when used for direct SS to Al alloy welding.It also compares the results obtained by use of two different powder explosives to obtain the same tri-layered plate via two different routes. The results are particularly interesting because both the explosives have substantial difference in their properties such as Velocity of Detonation, Gurney Characteristic Velocity, density and homogeneity which can be used as advantages from different angles of views.


Sign in / Sign up

Export Citation Format

Share Document