scholarly journals Assessment of land use cover changes, carbon sequestration and carbon stock in dry temperate forests of Chilas watershed, Gilgit-Baltistan

2024 ◽  
Vol 84 ◽  
Author(s):  
A. Raqeeb ◽  
A. Saleem ◽  
L. Ansari ◽  
S. M. Nazami ◽  
M. W. Muhammad ◽  
...  

Abstract Land use and land cover change are affecting the global environment and ecosystems of the different biospheres. Monitoring, reporting and verification (MRV) of these changes is of utmost importance as they often results in several global environmental consequences such as land degradation, mass erosion, habitat deterioration as well as micro and macro climate of the regions. The advance technologies like remote sensing (RS) and geographical information system (GIS) are helpful in determining/ identifying these changes. In the current study area, changes in carbon stocks, notably in forest areas, are resulting in considerable dynamics of carbon stocks as a result of climate change and carbon sequestration. This study was carried out in the Diamer district of the Gilgit Baltistan (GB) Pakistan to investigate the change in cover change/land use change (particularly Forest Land use) as well as carbon sequestration potential of the forests in the district during almost last 25years. The land cover, temporal Landsat data (level 1, LIT) were downloaded from the USGS EROS (2016), for 1979-1989, 1990-2000 and 2001-2012. Change in land uses, particularly forest cover was investigated using GIS techniques. Forest inventory was carried out using random sampling techniques. A standard plot of size 0.1 ha (n=80) was laid out to determine the tree density, volume, biomass and C stocks. Simulation of C stocks was accomplished by application of the CO2FIX model with the data input from inventory. Results showed a decrease in both forest and snow cover in the region from 1979-2012. Similarly decrease was seen in tree volume, tree Biomass, dynamics of C Stocks and decrease was in occur tree density respectively. It is recommended we need further more like project such as BTAP (Billion Tree Afforestation Project) and green Pakistan project to increase the forest cover, to control on land use change, protect forest ecosystem and to protect snow cover.

Ecosystems ◽  
2019 ◽  
Vol 23 (5) ◽  
pp. 1056-1074
Author(s):  
Bethany J. Blakely ◽  
Adrian V. Rocha ◽  
Jason S. McLachalan

AbstractAnthropogenic land use affects climate by altering the energy balance of the Earth’s surface. In temperate regions, cooling from increased albedo is a common result of historical land-use change. However, this albedo cooling effect is dependent mainly on the exposure of snow cover following forest canopy removal and may change over time due to simultaneous changes in both land cover and snow cover. In this paper, we combine modern remote sensing data and historical records, incorporating over 100 years of realized land use and climatic change into an empirical assessment of centennial-scale surface forcings in the Upper Midwestern USA. We show that, although increases in surface albedo cooled through strong negative shortwave forcings, those forcings were reduced over time by a combination of forest regrowth and snow-cover loss. Deforestation cooled strongly (− 5.3 Wm−2) and mainly in winter, while composition shift cooled less strongly (− 3.03 Wm−2) and mainly in summer. Combined, changes in albedo due to deforestation, shifts in species composition, and the return of historical forest cover resulted in − 2.81 Wm−2 of regional radiative cooling, 55% less than full deforestation. Forcings due to changing vegetation were further reduced by 0.32 Wm−2 of warming from a shortened snow-covered season and a thinning of seasonal snowpack. Our findings suggest that accounting for long-term changes in land cover and snow cover reduces the estimated cooling impact of deforestation, with implications for long-term land-use planning.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 867 ◽  
Author(s):  
Justyna Jaworek-Jakubska ◽  
Maciej Filipiak ◽  
Anna Napierała-Filipiak

Though on a global scale, for ecological reasons, increased forest cover is universally regarded as positive, on a local scale, the reforestation of arable land may pose threats to cultural landscapes by removing characteristic landscape features. Particularly vulnerable are marginal rural areas, e.g., mountain regions, where most traditional land use systems have survived and which are subject to the most spectacular land use change. The purpose of this article is to draw attention to the issue of the management of forest cover in historical cultural landscapes in mountain territories in Poland within the context of widespread land use change in Eastern Europe. Land cover data were obtained from historical and contemporary aerial photographs, as well as topographic maps from five time points between 1824 and 2016. The study was conducted by means of spatio-temporal forest cover trajectory analysis (LCTA), transition and time–depth analysis, and land cover change calculations that were made by means of ArcGIS. Our research indicates that the rate of change has risen considerably in the last two decades, and the current share of forest cover is much bigger than that reflected in the official data. Eight principal forest cover trajectory types were identified. The biggest area is occupied by woodland of long-term stability. Another large group is constituted by forests created on the basis of arable land and grassland as a result of simple conversion at one point in time, mainly in the years 1824–1886 and 1939–1994. At the same time, a sizeable group is made up by areas that have been subject to unplanned cyclical or dynamic changes during various periods. A very important group is comprised new forests that were created in 1994–2016, predominantly as a result of natural succession, that are often not included in official land classifications. The constant expansion of woodlands has led to a shrinking of historical former coppice woodlands. This indicates that the current landscape management mechanisms in Poland are inadequate for protecting the cultural landscape. The barriers include the lack of intersectoral cooperation and the overlooking of the historical context of landscapes. The present situation calls not only for verification of the existing forest policy but also for increasing the role and engagement of local communities, as well as making comprehensive local development plans, all of which may be helped by the findings of our study and of similar research.


2020 ◽  
Vol 13 (7) ◽  
pp. 3203-3220 ◽  
Author(s):  
Lei Ma ◽  
George C. Hurtt ◽  
Louise P. Chini ◽  
Ritvik Sahajpal ◽  
Julia Pongratz ◽  
...  

Abstract. Anthropogenic land-use and land-cover change activities play a critical role in Earth system dynamics through significant alterations to biogeophysical and biogeochemical properties at local to global scales. To quantify the magnitude of these impacts, climate models need consistent land-cover change time series at a global scale, based on land-use information from observations or dedicated land-use change models. However, a specific land-use change cannot be unambiguously mapped to a specific land-cover change. Here, nine translation rules are evaluated based on assumptions about the way land-use change could potentially impact land cover. Utilizing the Global Land-use Model 2 (GLM2), the model underlying the latest Land-Use Harmonization dataset (LUH2), the land-cover dynamics resulting from land-use change were simulated based on multiple alternative translation rules from 850 to 2015 globally. For each rule, the resulting forest cover, carbon density and carbon emissions were compared with independent estimates from remote sensing observations, U.N. Food and Agricultural Organization reports, and other studies. The translation rule previously suggested by the authors of the HYDE 3.2 dataset, that underlies LUH2, is consistent with the results of our examinations at global, country and grid scales. This rule recommends that for CMIP6 simulations, models should (1) completely clear vegetation in land-use changes from primary and secondary land (including both forested and non-forested) to cropland, urban land and managed pasture; (2) completely clear vegetation in land-use changes from primary forest and/or secondary forest to rangeland; (3) keep vegetation in land-use changes from primary non-forest and/or secondary non-forest to rangeland. Our analysis shows that this rule is one of three (out of nine) rules that produce comparable estimates of forest cover, vegetation carbon and emissions to independent estimates and also mitigate the anomalously high carbon emissions from land-use change observed in previous studies in the 1950s. According to the three translation rules, contemporary global forest area is estimated to be 37.42×106 km2, within the range derived from remote sensing products. Likewise, the estimated carbon stock is in close agreement with reference biomass datasets, particularly over regions with more than 50 % forest cover.


2003 ◽  
Vol 11 (3) ◽  
pp. 161-192 ◽  
Author(s):  
Ole Hendrickson

Global change — including warmer temperatures, higher CO2 concentrations, increased nitrogen deposition, increased frequency of extreme weather events, and land use change — affects soil carbon inputs (plant litter), and carbon outputs (decomposition). Warmer temperatures tend to increase both plant litter inputs and decomposition rates, making the net effect on soil carbon sequestration uncertain. Rising atmospheric carbon dioxide levels may be partly offset by rising soil carbon levels, but this is the subject of considerable interest, controversy, and uncertainty. Current land use changes have a net negative impact on soil carbon. Desertification and erosion associated with overgrazing and excess fuelwood harvesting, conversion of natural ecosystems into cropland and pasture land, and agricultural intensification are causing losses of soil carbon. Losses increase in proportion to the severity and duration of damage to root systems. Strategic landscape-level deployment of plants through agroforestry systems and riparian plantings may represent an efficient way to rebuild total ecosystem carbon, while also stabilizing soils and hydrologic regimes, and enhancing biodiversity. Many options exist for increasing carbon sequestration on croplands while maintaining or increasing production. These include no-till farming, additions of nitrogen fertilizers and manure, and irrigation and paddy culture. Article 3.4 of the Kyoto Protocol has stimulated intense interest in accounting for land use change impacts on soil carbon stocks. Most Annex I parties are attempting to estimate the potential for increased agricultural soil carbon sequestration to partly offset their growing fossil fuel greenhouse gas emissions. However, this will require demonstrating and verifying carbon stock changes, and raises an issue of how stringent a definition of verification will be adopted by parties. Soil carbon levels and carbon sequestration potential vary widely across landscapes. Wetlands contain extremely important reservoirs of soil carbon in the form of peat. Clay and silt soils have higher carbon stocks than sandy soils, and show a greater and more prolonged response to carbon sequestration measures such as afforestation. Increased knowledge of soil organisms and their activities can improve our understanding of how soil carbon will respond to global change. New techniques using soil organic matter fractionation and stable C isotopes are also making major contributions to our understanding of this topic. Key words: climate change, carbon dioxide (CO2), nitrogen, soil respiration, land use change, plant roots, afforestation, no-till.


2013 ◽  
Vol 448-453 ◽  
pp. 948-951
Author(s):  
Lian Kuan Wang ◽  
Pei Yong Lian ◽  
Yun Jiang Fu

Terrestrial vegetation and soils in the terrestrial biosphere play an active role in shaping the environmental systems of the Earth. An improved understanding of changes in carbon storage of terrestrial ecosystems is very important for assessing the impacts of increasing atmospheric CO2concentration and climate change on the terrestrial biosphere. Accurately predicting terrestrial carbon (C) storage requires understanding the stock and storage potential of C, because it helps us understand how ecosystems would respond to natural and anthropogenic disturbances under different management strategies. Grasslands are important for global carbon balance both for their large area and significant sink or source capacities, depending on the factors of climatic and land-use. Land-use change is often associated with changes in land cover and carbon (C) stocks. Land-use and land cover strongly influence carbon (C) storage and distribution within the grassland ecosystems.


2021 ◽  
Vol 12 (3) ◽  
pp. 1-18
Author(s):  
Samuel Ayesu ◽  
Victor Rex Barnes ◽  
Olivia Agbenyega

This study analyzes the patterns of land-use and land-cover changes for the last three decades (1986–2017) and its drivers for Owabi and Barekese watersheds in the moist semi-deciduous forest of Ghana. The study used Landsat satellite imageries of 1986, 1998, 2007, and 2017 and population data to analyze land cover and use changes of the two watersheds. A decline in natural vegetation cover by 57% and 71.3% has occurred for Owabi and Barekese watersheds respectively. Cropland increased by 77.1% and 105.2% while settlement has increased by 1,018% and 4%, respectively, for Owabi and Barekese watersheds. Cropland is the main form of land-use change for Barekese watershed while settlement is the main land-use change in the Owabi watershed. Annual expansion of settlement within the Owabi site was 38.1%, and cropland was 5.2% for the Barekese site. Population trends had a significant negative relationship with forest cover and a positive relationship with settlement and cropland. Catchment degradation was also influenced by the management model used.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Aman Srivastava ◽  
Pennan Chinnasamy

AbstractThe present study, for the first time, examined land-use land cover (LULC), changes using GIS, between 2000 and 2018 for the IIT Bombay campus, India. Objective was to evaluate hydro-ecological balance inside campus by determining spatio-temporal disparity between hydrological parameters (rainfall-runoff processes), ecological components (forest, vegetation, lake, barren land), and anthropogenic stressors (urbanization and encroachments). High-resolution satellite imageries were generated for the campus using Google Earth Pro, by manual supervised classification method. Rainfall patterns were studied using secondary data sources, and surface runoff was estimated using SCS-CN method. Additionally, reconnaissance surveys, ground-truthing, and qualitative investigations were conducted to validate LULC changes and hydro-ecological stability. LULC of 2018 showed forest, having an area cover of 52%, as the most dominating land use followed by built-up (43%). Results indicated that the area under built-up increased by 40% and playground by 7%. Despite rapid construction activities, forest cover and Powai lake remained unaffected. This anomaly was attributed to the drastically declining barren land area (up to ~ 98%) encompassing additional construction activities. Sustainability of the campus was demonstrated with appropriate measures undertaken to mitigate negative consequences of unwarranted floods owing to the rise of 6% in the forest cover and a decline of 21% in water hyacinth cover over Powai lake. Due to this, surface runoff (~ 61% of the rainfall) was observed approximately consistent and being managed appropriately despite major alterations in the LULC. Study concluded that systematic campus design with effective implementation of green initiatives can maintain a hydro-ecological balance without distressing the environmental services.


Sign in / Sign up

Export Citation Format

Share Document