scholarly journals Linking toxicity and predation in a venomous arthropod: the case of Tityus fuhrmanni (Scorpiones: Buthidae), a generalist predator scorpion

Author(s):  
Alejandra Arroyave-Muñoz ◽  
Arie van der Meijden ◽  
Sebastián Estrada-Gómez ◽  
Luis Fernando García
Keyword(s):  
2021 ◽  
Vol 66 (4) ◽  
pp. 583-593
Author(s):  
Rocío Cano-Martínez ◽  
David Carricondo-Sanchez ◽  
Olivier Devineau ◽  
Morten Odden

AbstractCyclic fluctuations of prey have profound effects on the functioning of ecosystems, for example, by changing the dynamics, behavior, and intraguild interactions of predators. The aim of this study was to assess the effect of rodent cyclic fluctuations in the interspecific interactions of a guild of small- and medium-sized predators: red fox (Vulpes vulpes), pine marten (Martes martes), and weasels (Mustela erminea and Mustela nivalis) in the boreal ecosystem. We analyzed eight years (2007–2014) of snow tracking data from southeastern Norway using structural equation models to assess hypothesized networks of causal relationships. Our results show that fluctuations in rodent abundance alter the strength of predator’s interactions, as well as the effect of determinant environmental variables. Pine marten and weasel abundances were positively associated with rodent population growth rate, but not red fox abundance. All predators were positively associated with each other; however, the association between red fox and the other predators weakened when rodents increased. Rodent fluctuations had variable effects on the habitat use of the predators. The presence of agricultural land was important for all predators, but this importance weakened for the mustelids as rodent abundance increased. We discuss the shifting role of interference and exploitative competition as possible mechanisms behind these patterns. Overall, we highlight the importance of accounting for the dynamics of prey resources when studying interspecific interactions among predators. Additionally, we demonstrate the importance of monitoring the predator populations in order to anticipate undesirable outcomes such as increased generalist predator abundances to the detriment of specialists.


Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 169
Author(s):  
Danai-Eleni Michailidou ◽  
Maria Lazarina ◽  
Stefanos P. Sgardelis

The ongoing climate change and the unprecedented rate of biodiversity loss render the need to accurately project future species distributional patterns more critical than ever. Mounting evidence suggests that not only abiotic factors, but also biotic interactions drive broad-scale distributional patterns. Here, we explored the effect of predator-prey interaction on the predator distribution, using as target species the widespread and generalist grass snake (Natrix natrix). We used ensemble Species Distribution Modeling (SDM) to build a model only with abiotic variables (abiotic model) and a biotic one including prey species richness. Then we projected the future grass snake distribution using a modest emission scenario assuming an unhindered and no dispersal scenario. The two models performed equally well, with temperature and prey species richness emerging as the top drivers of species distribution in the abiotic and biotic models, respectively. In the future, a severe range contraction is anticipated in the case of no dispersal, a likely possibility as reptiles are poor dispersers. If the species can disperse freely, an improbable scenario due to habitat loss and fragmentation, it will lose part of its contemporary distribution, but it will expand northwards.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 681
Author(s):  
Changchun Dai ◽  
Michele Ricupero ◽  
Zequn Wang ◽  
Nicolas Desneux ◽  
Antonio Biondi ◽  
...  

The harlequin ladybird, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), is a generalist predator and an effective biocontrol agent of various insect pests that has been exploited for the control of aphid pests in the greenhouse and field. However, insecticides are widely used to control aphid pests worldwide and the potential non-target effects of sulfoxaflor and imidacloprid for controlling aphid pests towards this biocontrol agent are little known. Although both sulfoxaflor and imidacloprid act on nicotinic acetylcholine receptors of insects, sulfoxaflor has a novel chemical structure compared with neonicotinoids. We assessed the lethal, sublethal and transgenerational effects of sulfoxaflor and imidacloprid on H. axyridis simultaneously exposed via ingestion of contaminated prey and via residual contact on the host plant at LC20 and LC50 doses estimated for the cotton aphid. Imidacloprid significantly reduced the survival of H. axyridis adults compared to sulfoxaflor at the same lethal concentration against cotton aphid. Both concentrations of imidacloprid and sulfoxaflor reduced the proportion of ovipositing females, and both concentrations of imidacloprid and sulfoxaflor, except LC20 dose of sulfoxaflor, reduced the fecundity and fertility of the parental generation. In the progeny of imidacloprid- and sulfoxaflor-exposed parents, both tested LC50 concentrations significantly decreased the juvenile survival rate, and both concentrations of imidacloprid and sulfoxaflor, except LC20 dose of sulfoxaflor, prolonged the development time. Our findings provide evidence of the negative influence of imidacloprid and sulfoxaflor at low lethal concentrations on the harlequin ladybird and on the progeny of exposed individuals, i.e., transgenerational effects. Hence, these findings stress the importance of optimizing the applications of imidacloprid and sulfoxaflor for the control of aphid pests, aiming at preserving the biocontrol services provided by H. axyridis throughout the integrated pest management approach.


2017 ◽  
Vol 7 (8) ◽  
pp. 2756-2766 ◽  
Author(s):  
Ondřej Michálek ◽  
Lenka Petráková ◽  
Stano Pekár

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Rizwan ◽  
Bilal Atta ◽  
Muhammad Arshad ◽  
Rashad Rasool Khan ◽  
Asli Dageri ◽  
...  

AbstractThe non-persistent impact of biocontrol agents can be revealed for pest control when associated entomopathogenic fungi (EPFs) negatively affect the natural enemies. In this assay, impacts of Beauvaria bassiana (Balsamo) Vuillemin, and Metarhizium anisopliae (Metschnikoff) Sorokin were studied for their compatibility or side effects on life table parameters of an important generalist predator, Coccinella septempunctata L. The results indicated non-significant impacts of both EPFs on life table parameters of C. septempunctata. The development time (egg-adult) was not significantly different in control (69.79 days) and EPFs treated C. septempunctata (69.35–80.07 days). Both fungi did not induce any significant changes in the fecundity, adult pre-oviposition period (APOP), total preoviposition period (TPOP), and mean generation time (T) as compared to control treatment. Similarly, no difference in fecundity rate of C. septempunctata was observed after EPFs treatment (287.7–288.5) compared to control (290.0). The highest net reproductive rate (R0) occurred in control (87.05 offspring individual−1) and M. anisopliae (86.31 offspring individual−1) as compared to B. bassiana treated beetles (76.97 offspring individual−1). The age-specific fecundity curves indicated that the C. septempunctata had a similar fecundity rate in both EPFs treatments and control. This study demonstrates no significant side effects of B. bassiana and M. anispoliae on the performance and biology of C. septempunctata. Considering the compatibility of both EPFs with C. septempunctata, their combinations can be recommended in various integrated pest management programs.


2020 ◽  
Vol 656 ◽  
pp. 75-87
Author(s):  
KM Depot ◽  
LC Scopel ◽  
SW Kress ◽  
P Shannon ◽  
AW Diamond ◽  
...  

Ecosystem-based fisheries management, which considers the interactions between fisheries, target species, and the physical and biological components of ecosystems, is necessary to ensure that directed fisheries avoid adverse impacts to ecosystems over the long term. The successful implementation of ecosystem-based fisheries management requires an understanding of predator-prey relationships and ways to operationalize such relationships to inform fisheries management. Here, we investigated if the diet of a generalist predator, Atlantic puffin Fratercula arctica, can be used as an indicator of the abundance of 2 commercially exploited prey species (haddock Melanogrammus aeglefinus and Acadian redfish Sebastes fasciatus) in the Gulf of Maine. Because haddock and redfish eaten by puffins are juveniles (age 0), there is potential to use their proportions and lengths in puffin diet to better understand the processes influencing haddock and redfish recruitment. By using principal component analysis to develop measures of diet across multiple puffin colonies, we show both spatial variation and large-scale patterns in the proportions and lengths of haddock and redfish in puffin diet. Spawning stock biomass was a strong predictor of haddock proportion in puffin diet and a moderate predictor of redfish proportion; however, proportions in puffin diet did not predict age-1 recruitment, suggesting that variation in recruitment is caused by processes that occur after the puffin breeding season and which affect the survival of older juveniles. Haddock length on one colony was a moderate predictor of age-1 recruitment. We conclude that puffin diet can be used as an indicator of haddock and redfish abundance.


2020 ◽  
Vol 28 (2) ◽  
pp. 155-179
Author(s):  
Nuno Onofre ◽  
Luís Sampaio

The diet of Short-toed Snake-eagle (Circaetus gallicus) during the breeding season in an area dominated by cork and holm oak parkland forests (Montados) was analyzed in this study. As expected, results showed that snakes are the dominant prey in the diet of this eagle, comprising up to 92.5% of the identified items, if potential secondary prey species were excluded. The Montpellier Snake (Malpolon monspessulanus) was the most consumed one (42.2%), followed by the Ladder Snake (Zamenis scalaris) (28.0%), and the water snakes (Natrix spp.) (14.2%). According to the same criteria, lizards (mainly Psammodromus algirus) and mammals represent between 4.8 and 2.2%, respectively. Other animals such as pond turtle and amphibians are irregular prey (<1%), and no bird remains were found at all. Short-toed Snake-eagle is usually referred as a stenophagic predator where snakes are by far its most important prey type, and where within this taxonomic group it behaves as a generalist predator. In this study this premise was then tested comparing the relative abundance of the snake species with their proportion in the diet composition of the eagle in order to know whether or not prey selection exists with regard to the species of snakes in this region. Results point to a quite plausible "preference" for the Ladder Snake and an "avoidance" for the smooth snakes group (Macroprotodon brevis/Coronella girondica), and possibly for the Horseshoe Whip (Hemorrhois hippocrepis). The avoidance to the Horseshoe Whip must be indirect and habitat related, while in relation to the two smooth snakes it may be due in large extend to its small size, in particular.


2013 ◽  
Vol 149 (3) ◽  
pp. 219-228 ◽  
Author(s):  
Jeffrey A. Harvey ◽  
Daniela Weber ◽  
Patrick De Clercq ◽  
Rieta Gols

Sign in / Sign up

Export Citation Format

Share Document