scholarly journals A short review: Comparisons of high-throughput phenotyping methods for detecting drought tolerance

2021 ◽  
Vol 78 (4) ◽  
Author(s):  
Jaeyoung Kim ◽  
Ki-Seung Kim ◽  
Yoonha Kim ◽  
Yong Suk Chung
PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254908
Author(s):  
Sameer Joshi ◽  
Emily Thoday-Kennedy ◽  
Hans D. Daetwyler ◽  
Matthew Hayden ◽  
German Spangenberg ◽  
...  

Drought is one of the most severe and unpredictable abiotic stresses, occurring at any growth stage and affecting crop yields worldwide. Therefore, it is essential to develop drought tolerant varieties to ensure sustainable crop production in an ever-changing climate. High-throughput digital phenotyping technologies in tandem with robust screening methods enable precise and faster selection of genotypes for breeding. To investigate the use of digital imaging to reliably phenotype for drought tolerance, a genetically diverse safflower population was screened under different drought stresses at Agriculture Victoria’s high-throughput, automated phenotyping platform, Plant Phenomics Victoria, Horsham. In the first experiment, four treatments, control (90% field capacity; FC), 40% FC at initial branching, 40% FC at flowering and 50% FC at initial branching and flowering, were applied to assess the performance of four safflower genotypes. Based on these results, drought stress using 50% FC at initial branching and flowering stages was chosen to further screen 200 diverse safflower genotypes. Measured plant traits and dry biomass showed high correlations with derived digital traits including estimated shoot biomass, convex hull area, caliper length and minimum area rectangle, indicating the viability of using digital traits as proxy measures for plant growth. Estimated shoot biomass showed close association having moderately high correlation with drought indices yield index, stress tolerance index, geometric mean productivity, and mean productivity. Diverse genotypes were classified into four clusters of drought tolerance based on their performance (seed yield and digitally estimated shoot biomass) under stress. Overall, results show that rapid and precise image-based, high-throughput phenotyping in controlled environments can be used to effectively differentiate response to drought stress in a large numbers of safflower genotypes.


Author(s):  
David Eyland ◽  
Nathalie Luchaire ◽  
Llorenç Cabrera-Bosquet ◽  
Boris Parent ◽  
Steven Janssens ◽  
...  

Crop wild relatives, the closely related species of crops, may harbor potentially important sources of new allelic diversity for (a)biotic tolerance or resistance. However, to date wild diversity is only poorly characterized and evaluated. Banana has a large wild diversity but only a narrow proportion is currently used in breeding programs. The main objective of this work was to evaluate genotype-dependent transpiration responses in relation to the environment. By applying continuous high-throughput phenotyping, we were able to construct genotype-specific transpiration response models in relation to light, VPD and soil water potential. We characterized and evaluated 6 (sub)species and discerned four phenotypic clusters. Significant differences were observed in leaf area, cumulative transpiration and transpiration efficiency. We confirmed a general stomatal-driven ‘isohydric’ drought avoidance behavior, but discovered genotypic differences in the onset and intensity of stomatal closure. We pinpointed crucial genotype specific environmental conditions when drought avoidance mechanisms were initiated and when stress kicked in. Differences between (sub)species were more pronounced under certain environmental conditions, illustrating the need for high-throughput dynamic phenotyping, modelling and validation. We conclude that the banana wild relatives contain useful drought tolerance traits, emphasizing the importance of their conservation and potential for use in breeding programs.


Planta ◽  
2020 ◽  
Vol 252 (3) ◽  
Author(s):  
Song Lim Kim ◽  
Nyunhee Kim ◽  
Hongseok Lee ◽  
Eungyeong Lee ◽  
Kyeong-Seong Cheon ◽  
...  

Abstract Main conclusion A new imaging platform was constructed to analyze drought-tolerant traits of rice. Rice was used to quantify drought phenotypes through image-based parameters and analyzing tools. Abstract Climate change has increased the frequency and severity of drought, which limits crop production worldwide. Developing new cultivars with increased drought tolerance and short breeding cycles is critical. However, achieving this goal requires phenotyping a large number of breeding populations in a short time and in an accurate manner. Novel cutting-edge technologies such as those based on remote sensors are being applied to solve this problem. In this study, new technologies were applied to obtain and analyze imaging data and establish efficient screening platforms for drought tolerance in rice using the drought-tolerant mutant osphyb. Red–Green–Blue images were used to predict plant area, color, and compactness. Near-infrared imaging was used to determine the water content of rice, infrared was used to assess plant temperature, and fluorescence was used to examine photosynthesis efficiency. DroughtSpotter technology was used to determine water use efficiency, plant water loss rate, and transpiration rate. The results indicate that these methods can detect the difference between tolerant and susceptible plants, suggesting their value as high-throughput phenotyping methods for short breeding cycles as well as for functional genetic studies of tolerance to drought stress.


PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e97047 ◽  
Author(s):  
Nora Honsdorf ◽  
Timothy John March ◽  
Bettina Berger ◽  
Mark Tester ◽  
Klaus Pillen

2020 ◽  
Vol 324 ◽  
pp. 248-260
Author(s):  
Javaid Akhter Bhat ◽  
Rupesh Deshmukh ◽  
Tuanjie Zhao ◽  
Gunvant Patil ◽  
Amit Deokar ◽  
...  

2020 ◽  
Author(s):  
A.S. Nehe ◽  
M. J. Foulkes ◽  
I. Ozturk ◽  
A. Rasheed ◽  
L. York ◽  
...  

AbstractBread wheat (Triticum aestivum L) is one of main staple food crops worldwide contributing 20% calories in human diet. Drought stress is the main factor limiting yields and threatening to food security, with climate change resulting in more frequent and intense drought. Developing drought-tolerant wheat cultivars is a promising way forward. The use of a holistic approaches that include high-throughput phenotyping and genetic makers in selection could help in accelerating genetic gains. Fifty advanced breeding lines were selected from the CIMMYT Turkey winter wheat breeding program and studied under irrigated and semiarid conditions for two years. High-throughput phenotyping were done for wheat crown root traits using shovelomics techniques and canopy green area and senescence dynamics using vegetation indices (green area using RGB images and Normalized Difference Vegetation Index using spectral reflectance). In addition, genotyping by KASP markers for adaptability genes was done. Overall, under semiarid conditions compared to irrigated conditions yield reduced by 3.09 t ha−1 (−46.8%). Significant difference between the treatment and genotype was observed for grain yield and senescence traits. Genotypes responded differently under drought stress. Root traits including shallower nodal root angle under irrigated conditions and root number per shoot under semiarid conditions were associated with increased grain yield. RGB based vegetation index measuring canopy green area at anthesis was more strongly associated with GY than NDVI under drought. Five established functional genes (PRR73.A1 – flowering time, TEF-7A – grain size and weight, TaCwi.4A - yield under drought, Dreb1-drought tolerance, and ISBW11.GY.QTL.CANDIDATE- grain yield) were associated with different drought-tolerance traits in this experiment. We conclude that a combination of high-throughput phenotyping and selection for genetic markers can help to develop drought-tolerant wheat cultivars.


2011 ◽  
Author(s):  
E. Kyzar ◽  
S. Gaikwad ◽  
M. Pham ◽  
J. Green ◽  
A. Roth ◽  
...  

2021 ◽  
Author(s):  
Peng Song ◽  
Jinglu Wang ◽  
Xinyu Guo ◽  
Wanneng Yang ◽  
Chunjiang Zhao

2021 ◽  
Vol 13 (1) ◽  
pp. 147
Author(s):  
Tom De Swaef ◽  
Wouter H. Maes ◽  
Jonas Aper ◽  
Joost Baert ◽  
Mathias Cougnon ◽  
...  

The persistence and productivity of forage grasses, important sources for feed production, are threatened by climate change-induced drought. Breeding programs are in search of new drought tolerant forage grass varieties, but those programs still rely on time-consuming and less consistent visual scoring by breeders. In this study, we evaluate whether Unmanned Aerial Vehicle (UAV) based remote sensing can complement or replace this visual breeder score. A field experiment was set up to test the drought tolerance of genotypes from three common forage types of two different species: Festuca arundinacea, diploid Lolium perenne and tetraploid Lolium perenne. Drought stress was imposed by using mobile rainout shelters. UAV flights with RGB and thermal sensors were conducted at five time points during the experiment. Visual-based indices from different colour spaces were selected that were closely correlated to the breeder score. Furthermore, several indices, in particular H and NDLab, from the HSV (Hue Saturation Value) and CIELab (Commission Internationale de l’éclairage) colour space, respectively, displayed a broad-sense heritability that was as high or higher than the visual breeder score, making these indices highly suited for high-throughput field phenotyping applications that can complement or even replace the breeder score. The thermal-based Crop Water Stress Index CWSI provided complementary information to visual-based indices, enabling the analysis of differences in ecophysiological mechanisms for coping with reduced water availability between species and ploidy levels. All species/types displayed variation in drought stress tolerance, which confirms that there is sufficient variation for selection within these groups of grasses. Our results confirmed the better drought tolerance potential of Festuca arundinacea, but also showed which Lolium perenne genotypes are more tolerant.


Sign in / Sign up

Export Citation Format

Share Document