scholarly journals Applying RGB- and Thermal-Based Vegetation Indices from UAVs for High-Throughput Field Phenotyping of Drought Tolerance in Forage Grasses

2021 ◽  
Vol 13 (1) ◽  
pp. 147
Author(s):  
Tom De Swaef ◽  
Wouter H. Maes ◽  
Jonas Aper ◽  
Joost Baert ◽  
Mathias Cougnon ◽  
...  

The persistence and productivity of forage grasses, important sources for feed production, are threatened by climate change-induced drought. Breeding programs are in search of new drought tolerant forage grass varieties, but those programs still rely on time-consuming and less consistent visual scoring by breeders. In this study, we evaluate whether Unmanned Aerial Vehicle (UAV) based remote sensing can complement or replace this visual breeder score. A field experiment was set up to test the drought tolerance of genotypes from three common forage types of two different species: Festuca arundinacea, diploid Lolium perenne and tetraploid Lolium perenne. Drought stress was imposed by using mobile rainout shelters. UAV flights with RGB and thermal sensors were conducted at five time points during the experiment. Visual-based indices from different colour spaces were selected that were closely correlated to the breeder score. Furthermore, several indices, in particular H and NDLab, from the HSV (Hue Saturation Value) and CIELab (Commission Internationale de l’éclairage) colour space, respectively, displayed a broad-sense heritability that was as high or higher than the visual breeder score, making these indices highly suited for high-throughput field phenotyping applications that can complement or even replace the breeder score. The thermal-based Crop Water Stress Index CWSI provided complementary information to visual-based indices, enabling the analysis of differences in ecophysiological mechanisms for coping with reduced water availability between species and ploidy levels. All species/types displayed variation in drought stress tolerance, which confirms that there is sufficient variation for selection within these groups of grasses. Our results confirmed the better drought tolerance potential of Festuca arundinacea, but also showed which Lolium perenne genotypes are more tolerant.

Author(s):  
M. Jincya ◽  
V. Babu Rajendra Prasad ◽  
P. Jeyakumara ◽  
A. Senthila ◽  
N. Manivannan

Drought stress is one of the major constraints for pulse production which negatively affecting its growth and production. Screening and selection of desirable genotypes for drought tolerance is the first and foremost important step in pulse breeding program. In green gram standardization for moisture stress was done under laboratory conditions using various concentration of PEG 6000 and 50% seedling mortality was observed at 0.5 MPa of moisture stress. Using this level of moisture stress 108 green gram genotypes were screened for their drought tolerance at seedling level and the following parameters viz., germination percentage, promptness index, radicle length, root length stress index, germination stress index and seed vigour were recorded. Observations revealed that the following green gram genotypes COGG 1332, VGG 16069, VGG 17003, VGG 17004, VGG 17009, VGG 17019 and VGG 17045 were found highly tolerant to moisture stress at seedling stage.


2020 ◽  
Author(s):  
Vita Antoniuk ◽  
Junxiang Peng ◽  
Kiril Manevski ◽  
Kirsten Kørup Sørensen ◽  
Rene Larsen ◽  
...  

<p>This abstract is for SUPPORT APPLICATION.</p><p>Drought is the most significant stress that reduces crop yield, hence, agricultural irrigation is the major consumer of freshwater worldwide. There is everlasting need to improve irrigation applications in order to increase water use efficiency and save water. Conventional methods to estimate crop water status and within-field variability are precise, yet, highly demanding for time and manpower. Remote sensing in the reflective and the emissive spectrum with unmanned aerial vehicle (UAV) holds potential to detect drought stress by observing canopy status over a larger area. A common method to detect drought stress using UAV thermal imagery is the Crop Water Stress Index (CWSI), which does needs improvement and parametrization for cereal crops such as winter wheat.<br>Field experiment with winter wheat was performed in 24 plots (30 m x 30 m) under three different irrigation regimes in 2018 (drought year) and 2019 (normal year) in Denmark. Thermal and multispectral data on UAV scale were collected during the growth period. Plant physiology, i.e., stomatal conductance, leaf water potential and canopy cover was measured, in addition to soil water content. Crop water deficit was estimated through comparison of the variability of canopy temperature and plant physiological changes. The resulting correlation pointed on clear possibility to quantify crop water status using thermal data, which is useful to develop a site-specific application of irrigation. Further work involves parameterization of CWSI and calculation of and comparison with other indices to test for improvements.</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254908
Author(s):  
Sameer Joshi ◽  
Emily Thoday-Kennedy ◽  
Hans D. Daetwyler ◽  
Matthew Hayden ◽  
German Spangenberg ◽  
...  

Drought is one of the most severe and unpredictable abiotic stresses, occurring at any growth stage and affecting crop yields worldwide. Therefore, it is essential to develop drought tolerant varieties to ensure sustainable crop production in an ever-changing climate. High-throughput digital phenotyping technologies in tandem with robust screening methods enable precise and faster selection of genotypes for breeding. To investigate the use of digital imaging to reliably phenotype for drought tolerance, a genetically diverse safflower population was screened under different drought stresses at Agriculture Victoria’s high-throughput, automated phenotyping platform, Plant Phenomics Victoria, Horsham. In the first experiment, four treatments, control (90% field capacity; FC), 40% FC at initial branching, 40% FC at flowering and 50% FC at initial branching and flowering, were applied to assess the performance of four safflower genotypes. Based on these results, drought stress using 50% FC at initial branching and flowering stages was chosen to further screen 200 diverse safflower genotypes. Measured plant traits and dry biomass showed high correlations with derived digital traits including estimated shoot biomass, convex hull area, caliper length and minimum area rectangle, indicating the viability of using digital traits as proxy measures for plant growth. Estimated shoot biomass showed close association having moderately high correlation with drought indices yield index, stress tolerance index, geometric mean productivity, and mean productivity. Diverse genotypes were classified into four clusters of drought tolerance based on their performance (seed yield and digitally estimated shoot biomass) under stress. Overall, results show that rapid and precise image-based, high-throughput phenotyping in controlled environments can be used to effectively differentiate response to drought stress in a large numbers of safflower genotypes.


HortScience ◽  
2001 ◽  
Vol 36 (1) ◽  
pp. 148-152 ◽  
Author(s):  
Bingru Huang

Drought is a major factor limiting the growth of turfgrasses in many areas. The functional relationship of drought stress and accumulation of various ions in turfgrasses is not well understood. The objective of this study was to investigate the effects of drought on root growth and accumulation of several major nutrients in three tall fescue (Festuca arundinacea Schreb.) cultivars varying in drought tolerance (Falcon II = Houndog V > Rebel Jr). Grasses were grown in well-watered or drying (nonirrigated) soil for 35 days in a greenhouse. Drought conditions limited total root length to a greater extent for `Rebel Jr' than for `Falcon II' and `Houndog V', while specific root length (SRL) was greater in `Falcon II' and `Houndog V' than in `Rebel Jr'. Concentrations of N, P, and Mg decreased, whereas those of K, Ca, and Fe increased, in shoots of drought-stressed plants of all three cultivars. Root N was not affected, but root P decreased in `Rebel Jr', and root K decreased in all three cultivars under drought conditions. Drought reduced the proportions of N and P in shoots and increased those in roots, while increasing the proportion of K in shoots and decreasing that in roots. During drought stress, both `Falcon II' and `Houndog V' maintained higher K concentration in shoots, and `Falcon II' in roots, than did `Rebel Jr', but `Rebel Jr' and `Houndog V' had higher Fe concentration in shoots than did `Falcon II'. The higher K and lower Fe accumulations in shoots could contribute to better drought tolerance of tall fescue cultivars.


2021 ◽  
Vol 11 ◽  
Author(s):  
Mahmoud Gad ◽  
Hongbo Chao ◽  
Huaixin Li ◽  
Weiguo Zhao ◽  
Guangyuan Lu ◽  
...  

Drought stress is one of the most environmental abiotic stresses affecting seed germination and crop growth. In the present study, the genetic characteristics of seed germination under drought stress in a Brassica napus double haploid population were analyzed. Five germination-related indexes, including germination percentage (GP), root length (RL), shoot length (SL), fresh weight (FW), and root-to-shoot length ratio (R/S) under control and drought stress, were calculated, and the drought stress index (DSI), including DSI-GP, DSI-RL, DSI-SL, DSI-FW, and DSI-R/S, was determined using the quantitative trait loci (QTLs) analysis based on high-density genetic linkage map. The phenotypic analysis indicated that the R/S is an effective morphological trait in the determination of drought tolerance in the seedling stage. Thirty-nine identified QTLs were observed for these traits and then integrated into 36 consensus QTLs, in which 18 QTLs were found to affect the DSI of four traits (GP, RL, SL, and R/S). Based on the co-linearity between genetic and physical maps of B. napus, 256 candidate genes were detected, and 128 genes have single-nucleotidepolymorphisms/insertion–deletion (SNP/InDel) variations between two parents, some of which were associated with the drought stress tolerance (for example, BnaC03g32780D, BnaC03g37030D, and BnaC09g27300D). The present results laid insights into drought tolerance and its genetic bases in B. napus.


2018 ◽  
Vol 69 (10) ◽  
pp. 1041 ◽  
Author(s):  
Mohammad Nur Alam ◽  
Yanping Wang ◽  
Zhulong Chan

Tall fescue (Festuca arundinacea Schreb.) is a widely used, cool-season turf grass and is relatively sensitive to water stress. Melatonin has been reported to improve abiotic stress tolerance in many plants. In this study, we demonstrated that, although shoot height and fresh weight of tall fescue seedlings were significantly reduced by drought stress, they were increased by melatonin pre-treatment compared with control plants. Chemical analyses showed that tall fescue seedlings pre-treated with melatonin exhibited decreased levels of reactive oxygen species, electrolyte leakage and malondialdehyde, but higher levels of antioxidant enzyme activities (catalase, and peroxidase) and total chlorophyll content, compared with untreated seedlings. Leaf water loss was also partially mitigated and leaf water content increased by melatonin application, resulting in improved plant growth under drought stress. Moreover, root growth of tall fescue seedlings was promoted by melatonin under osmotic stress. The results show that drought tolerance was improved in cool-season tall fescue by application of exogenous melatonin. Therefore, melatonin may potentially be used as a protectant for plants against the deleterious effects of drought or water-deficit stress.


2011 ◽  
Vol 39 (2) ◽  
pp. 164 ◽  
Author(s):  
Amir Hossein SHIRANI RAD ◽  
Abouzar ABBASIAN

Drought is a wide spread problem seriously influencing rapeseed (Brassica napus L.) production, mostly in dryland regions. This study was conducted to determine drought tolerance genotypes with superiority in different stressed environments. Twenty three rapeseed genotypes were tested in a split plot design based on randomized complete block design (RCBD) with four replications in two years (2008- 2009 and 2009-2010) at Seed and Plant Improvement Institute of Karaj, Iran. Seven drought resistance indices include susceptible stress index (SSI), tolerance index (TOL), stress mean productivity (MP), geometric mean productivity (GMP), stress tolerance index (STI), yield index (YI) and yield stability index (YSI) were applied on the basis of seed yield in non stress and drought stress conditions. Based on different drought indices, genotypes ‘Modena’, ‘Geronimo’, ‘Elite’, ‘Syn-4’ and ‘SLM046’ had the best rank with low standard deviation. The results indicated that they have stable yield performance. Bi-plot display and cluster analysis cleared superiority of these genotypes in both years. The synthetic derived cultivars could perform well across all environments with better agronomic performance. Results showed MP, GMP and YI indices were more effective in identifying high yielding cultivars in diverse water scarcity.


2021 ◽  
Vol 12 (2) ◽  
pp. 379-391
Author(s):  
Abdourasmane Kadougoudiou Konate ◽  
Adama Zongo ◽  
Jean Rodrigue Sangaré ◽  
Audrey Dardou ◽  
Alain Audebert

Most lowland rice in West Africa depends mainly on rainfall for water supply. Drought is consequently one of the major constraints on rice production, drastically affecting both plant growth and development. The objective of this work was to study the impact of water deficit both on canopy temperature and on chlorophyll fluorescence level, used as indicators of transpiration and photosynthetic activity. Measurements using infrared thermography and fluorimetry were taken on both 17 lines resulting from the cross IR64 X B6144F-MR-6-0-0 and their two parents plus one tolerant (APO) controls. These 20 lines were phenotyped after applying a drought constraint in a controlled laboratory environment in Montpellier (France) in 2013 and - 2014 and in field in the lowlands of Banfora and Farako-ba (INERA Burkina Faso) in 2014. Results showed that the drought stress sustained by the plants increased canopy temperature in all lines, entailing differential disturbance of the photosynthetic process, markedly depressed in susceptible lines. A classification of the lines with respect to their sensitivity to stress could be established by using the Drought Factor Index (DFI), and Crop Water Stress Index (CWSI) as was established a correlation between the phenotyping methods by infrared thermography and fluorimetry. This article propose an efficient application of combined imaging as a rapid and accurate phenotyping tool for crop yield improvement, in particular by monitoring the efficiency of plant responses to the fluctuating of environmental conditions. This study proved the efficiency of the method combining IR thermographie and fluorimetry as a field phenotyping tools for drought resistance.


Sign in / Sign up

Export Citation Format

Share Document