scholarly journals Non-destructive measurement of leaf area and leaf pigments in feijoa trees

Author(s):  
Marcos R. Sachet ◽  
Idemir Citadin ◽  
Marieli T. Guerrezi ◽  
Rafael H. Pertille ◽  
Joel Donazzolo ◽  
...  

ABSTRACT Leaf area (cm2 per leaf) and leaf pigment content are important traits that can be used to better understand a plants physiology. In this study, empirical non-destructive models for leaf area and leaf pigment based on the leaf dimensions, length (L) and width (W) in centimeters, and chlorophyll meter readings were developed for feijoa (Acca sellowiana). The experiment was carried out during January 2016 using five-year-old trees of 60 genotypes, grown under field conditions in the state of Paraná, Brazil. The proposed leaf area (LA) model was L A = 0 . 0022 L 3 + 0 . 1482 W 2 + 0 . 6159 L W + 0 . 1076 (R2 = 0.99). Three current leaf area models found in the literature were also assessed. All of the already created models were less accurate than the model proposed in this article. The proposed leaf pigment models were based on the Falker Chlorophyll Index for Chlorophyll a (A) and b (B), these were C h l a = 2 . 564 A + 13 . 098 B - 42 . 605 (R2 = 0.94), C h l b = 1 . 538 A + 3 . 287 B + 8 . 847 (R2 = 0.86) and C a r o t e n o i d s = 0 . 947 B + 8 . 943 (R2 = 0.88) expressed as µmol m-2 of leaf blade. In conclusion, the proposed models in this study were shown to be a reliable non-destructivel way of estimating A. sellowiana leaf area and leaf pigment.

2019 ◽  
Vol 35 (6) ◽  
Author(s):  
João Everthon da Silva Ribeiro ◽  
Ester dos Santos Coêlho ◽  
Francisco Romário Andrade Figueiredo ◽  
Sérgio de Faria Lopes ◽  
Manoel Bandeira de Albuquerque

Erythroxylum citrifolium is a neotropical plant species recorded in all regions of Brazil. Determining leaf area is of fundamental importance to studies related to plant propagation and growth. The objective was to obtain an equation to estimate the leaf area of E. citrifolium from linear dimensions of the leaf blade (length and width). A total of 200 leaf blades were collected in Parque Estadual Mata do Pau-Ferro in the municipality of Areia, state of Paraíba, Northeast Brazil. The models evaluated were: linear, linear without intercept, quadratic, cubic, power and exponential. The best model was determined by the criteria of: high coefficient of determination (R²), low root mean square error (RMSE), low Akaike information criterion (AIC), high Willmott concordance index (d) and a BIAS index close to zero. All of the models constructed satisfactorily estimated the leaf area of E. citrifolium, with coefficients of determination above 0.9050, but the power model using the product between length and width (L*W) ŷ = 0.5966 * LW1.0181 was the best, with the highest values of R² and d, low values of RMSE and AIC, and a BIAS index closest to zero.


2015 ◽  
Vol 75 (1) ◽  
pp. 152-156 ◽  
Author(s):  
MC. Souza ◽  
CL. Amaral

Leaf area estimation is an important biometrical trait for evaluating leaf development and plant growth in field and pot experiments. We developed a non-destructive model to estimate the leaf area (LA) of Vernonia ferruginea using the length (L) and width (W) leaf dimensions. Different combinations of linear equations were obtained from L, L2, W, W2, LW and L2W2. The linear regressions using the product of LW dimensions were more efficient to estimate the LA of V. ferruginea than models based on a single dimension (L, W, L2 or W2). Therefore, the linear regression “LA=0.463+0.676WL” provided the most accurate estimate of V. ferruginea leaf area. Validation of the selected model showed that the correlation between real measured leaf area and estimated leaf area was very high.


2021 ◽  
Vol 42 (3Supl1) ◽  
pp. 1529-1548
Author(s):  
Alberto Cargnelutti Filho ◽  
◽  
Rafael Vieira Pezzini ◽  
Ismael Mario Márcio Neu ◽  
Gabriel Elias Dumke ◽  
...  

The objective of this work was to model and identify the best models for estimating the leaf area, determined by digital photos, of buckwheat (Fagopyrum esculentum Moench) of the cultivars IPR91-Baili and IPR92-Altar, as a function of length (L), width (W) or length x width product (LW) of the leaf blade. Ten uniformity trials (blank experiments) were carried out, five with IPR91-Baili cultivar and five with IPR92-Altar cultivar. The trials were performed on five sowing dates. In each trial and cultivar, expanded leaves were collected at random from the lower, middle and upper segments of the plants, totaling 1,815 leaves. In these 1,815 leaves, L and W were measured and the LW of the leaf blade was calculated, which were used as independent variables in the model. The leaf area of each leaf was determined using the digital photo method (Y), which was used as a dependent variable of the model. For each sowing date, cultivar and thirds of the plant, 80% of the leaves (1,452 leaves) were randomly separated for the generation of the models and 20% of the leaves (363 leaves) for the validation of the models of leaf area estimation as a function of linear dimensions. For buckwheat, IPR91-Baili and IPR92-Altar cultivars, the quadratic model (Ŷ = 0.5217 + 0.6581LW + 0.0004LW2, R2 = 0.9590), power model (Ŷ = 0.6809LW1.0037, R2 = 0.9587), linear model (Ŷ = 0.0653 + 0.6892LW, R2 = 0.9587) and linear model without intercept (Ŷ = 0.6907LW, R2 = 0.9587) are indicated for the estimation of leaf area determined by digital photos (Y) based on the LW of the leaf blade (x), and, preferably, the linear model without intercept can be used, due to its greater simplicity.


2007 ◽  
Vol 71 (2) ◽  
pp. 99-108 ◽  
Author(s):  
Céline Leroy ◽  
Laurent Saint-André ◽  
Daniel Auclair

2009 ◽  
Vol 36 (11) ◽  
pp. 857 ◽  
Author(s):  
Katharina Siebke ◽  
Marilyn C. Ball

Equations for non-destructive determination of chlorophyll b : a ratios in grasses were developed from reflectance spectra of intact leaves of barley (Hordeum vulgare L.) and two barley mutants: clorina f2, which lacks chlorophyll b and clorina f104, which has a low chlorophyll b content. These plants enabled separation of effects of chlorophyll composition on reflectance spectra due to differential light absorption by chlorophylls a and b and to measure the effects of chlorophyll b on the contribution of fluorescence emitted by chlorophyll a to the reflectance spectra. Indices developed from these data were then tested on growth chamber-grown leaves from six C3 and 17 C4 grass species (7 NAD-ME and 10 NADP-ME subtypes). We used the chlorophyll b : a ratio because the data were less skewed than the chlorophyll a : b ratio. The best index for determination of the chlorophyll b : a ratio utilised wavelengths affected by chlorophyll absorbance: [R626 – 0.5 (R603 + R647)]/[R552– R626]. The chlorophyll b : a ratio was significantly lower in the C4 than C3 grasses, but was not sufficient in itself to separate these two functional groups. However, because of differences in fluorescence characteristics, C3 and C4 species could be distinguished by an index based on wavelengths affected by chlorophyll fluorescence: [R696 to 709/R545 to 567].


2017 ◽  
Vol 10 (1) ◽  
pp. 58-64
Author(s):  
Indera Sakti Nasution

Non-destructive measurement of approaches of modeling can be very convenient and useful for plant growth estimation. This study, digital image processing was evaluated as a non-destructive technique to estimate leaf area of Bellis perennis. The plant samples were growing in the greenhouse and the images were taken every day using Kinect camera. The proposed method used combination of L*a*b* color space, Otsu’s thresholding, morphological operations and connected component analysis to estimate leaf area of Bellis perennis. L* channel was used to distinguish the leaves and background. Calibration area uses a pot of known area in each image as a scale to calibrate the leaves area. The results show that the algorithm is able to separate leaf pixels from soil or pot backgrounds, and also allow it to be implemented in greenhouse automatically. This algorithm can be used for other plants in assumption that there is not too much leaf overlapped during measurement.


2014 ◽  
Vol 577 ◽  
pp. 664-667 ◽  
Author(s):  
Li Zhao ◽  
Li Li Yang ◽  
Shi Gang Cui ◽  
Xing Li Wu ◽  
Fan Liang ◽  
...  

Modern agriculture is developing towards the direction of intelligent. We can realize the nondestructive measurement of plant leaf area by using the digital camera. In this paper, we make the same ratio between the camera’s screen and the background plate to overcome the problem of geometric distortion. Then we use two perpendicular digital cameras from the front and side to collect images respectively for curved leaf. Because there are characteristics of the image grey value mutation on the rage of the vane, we can extract the leaf by image segmentation. The leaf area can be calculated by the statistic of the pixels number according to the projection principle. Experiments show that, the error of leaf area measurement reduces from 13.51% to 5.93% by binocular vision. So this method not only can get the measurement of leaf area data, but also can effectively avoid the two-dimensional image distortion and improve the accuracy of leaf area calculation.


2014 ◽  
Vol 74 (1) ◽  
pp. 222-225 ◽  
Author(s):  
MC Souza ◽  
G Habermann

We developed linear equations to predict the leaf area (LA) of the species Styrax pohlii and Styrax ferrugineus using the width (W) and length (L) leaf dimensions. For both species the linear regression (Y=α+bX) using LA as a dependent variable vs. W × L as an independent variable was more efficient than linear regressions using L, W, L2 and W2 as independent variables. Therefore, the LA of S. pohlii can be estimated with the equation LA=0.582+0.683WL, while the LA of S. ferrugineus follows the equation LA=−0.666+0.704WL.


Sign in / Sign up

Export Citation Format

Share Document