scholarly journals Performance of models to determine flow rate using orifice plates

Author(s):  
Nicolas D. Cano ◽  
Antonio P. de Camargo ◽  
Gustavo L. Muniz ◽  
Jonesmar de Oliveira ◽  
José G. Dalfré Filho ◽  
...  

ABSTRACT This study aimed to evaluate three methodologies for orifice-plate water-flow estimation by quantifying errors in the flow determinations to propose an appropriate measurement range for each evaluated condition. Two orifice-plate models (nominal diameters of 100 and 150 mm) with 50% restriction in the flow section were evaluated. In the theoretical equations, the discharge coefficient was obtained using the Reader-Harris/Gallagher equation (Method 1) and approximated from experimental data using the angular coefficient of a zero-intercept straight line (Method 2). The recommended measurement ranges for errors that were lower than 5% for the 100 and 150 mm plates were 30 to 65 m3 h-1 and 70 to 130 m3 h-1 using the theoretical equation and 20 to 65 m3 h-1 and 40 to 130 m3 h-1 using the empirical equation, respectively. The Reader-Harris/Gallagher equation (Method 1) adequately estimated the discharge coefficient of the orifice plates; however, the use of empirical equations (Method 3) demonstrated smaller measurement errors and greater rangeability of the evaluated flow meters.

2015 ◽  
Vol 42 (7) ◽  
pp. 490-502 ◽  
Author(s):  
Hediye Tuydes-Yaman ◽  
Oruc Altintasi ◽  
Nuri Sendil

Intersection movements carry more disaggregate information about origin–destination (O–D) flows than link counts in a traffic network. In this paper, a mathematical formulation is presented for O–D matrix estimation using intersection counts, which is based on an existing linear programming model employing link counts. The proposed model estimates static O–D flows for uncongested networks assuming no a priori information on the O–D matrix. Both models were tested in two hypothetical networks previously used in O–D matrix studies to monitor their performances assuming various numbers of count location and measurement errors. Two new measures were proposed to evaluate the model characteristics of O–D flow estimation using traffic counts. While both link count based and intersection count based models performed with the same success under complete data collection assumption, intersection count based formulation estimated the O–D flows more successfully under decreasing number of observation locations. Also, the results of the 30 measurement error scenarios revealed that it performs more robustly than the link count based one; thus, it better estimates the O–D flows.


Author(s):  
R. F. Johnson ◽  
J. W. Rish

A pavement deflectometer has been developed for continuous measurement of airfield pavements under a rolling load wheel. The rolling weight deflectometer (RWD) measures pavement deflection using a new method of laser triangulation. It also compensates for bending of the beam on which the sensors are mounted. This compensation allows accurate measurement of deflection in the presence of motion and thermal effects. The deflection measurement incorporates data from four equally spaced pavement sensors mounted on a beam. The method requires the sensors to remain in a straight line at all times. This method was previously plagued with measurement errors caused by thermal and vibrational effects. The RWD uses a laser beam to monitor the state of bending of the physical beam in real time. The bending data are used with pavement sensor data to produce accurate deflection measurements in the presence of any amount of beam bending. The bending-compensated RWD produces deflection measurements on 0.3-m (1-ft) intervals with an accuracy of 40 microns (0.0015 in.) while moving at 10 km/hr (6 mph). The RWD is composed of a towed trailer, a networked data-acquisition system, and a load platform. Its essential elements consist of a horizontally transported beam, strategically placed pavement sensors, sensors to measure beam bending, an odometer, and a data-acquisition computer. A brief history of pavement deflection methods is presented along with a description of the RWD. Preliminary field results include a comparison between data obtained by a falling weight deflectometer and the RWD.


Author(s):  
Boualem Laribi ◽  
Pierre Wauters ◽  
Mohamed Aichouni

The present work is concerned a comparative study of the decay of swirling turbulent pipe flow downstream of three flow conditioners, the Etoile, the Tube bundle, and the Laws perforate plate, and its effect on accuracy of orifice plate flow meter. The swirl was generated by a double 90° degrees elbows in perpendicular planes. The discharge coefficients were measured with 3 different orifice meters with β = 0.5, 0.62, 0.70 at different Reynolds number. As a conclusion, the experimental study of the three flow conditioners used separately shows that the flow need longer distance for close to fully developed pipe flow and some errors, by reason of the swirl, on the discharge coefficient were inevitable for distance less 12D.


Volume 1 ◽  
2004 ◽  
Author(s):  
Thomas B. Morrow

The Metering Research Facility (MRF) was commissioned in 1995/1996 at Southwest Research Institute for research on, and calibration of natural gas flow meters. A key commissioning activity was the calibration of critical flow Venturi (sonic) nozzles by a gravimetric proving process flowing nitrogen or natural gas at different pressures. This paper concerns the calibration of the four sonic nozzles installed in the MRF Low Pressure Loop (LPL). Recently, a new project prompted a review of the relations used to calculate sonic nozzle discharge coefficient in the LPL data acquisition computer code. New calibrations of the LPL sonic nozzles were performed flowing natural gas over a lower range of pressure than used in the original commissioning tests. The combination of new and old gravimetric calibration data are shown to agree well with correlations published by Arnberg and Ishibashi (2001) and by Ishibashi and Takamoto (2001) for laminar, transitional and turbulent boundary layer flow in critical flow Venturi nozzles.


2014 ◽  
Vol 699 ◽  
pp. 915-920 ◽  
Author(s):  
Bukhari Manshoor ◽  
Mohd Fahmi Othman ◽  
Izzuddin Zaman ◽  
Zamani Ngali ◽  
Amir Khalid

The plant industry is required to measure flow rate more accurately to meet plant operation and cost accounting objectives. The opposing concern of improving flow meter accuracy is resolved by using flow conditioners. The distance of implementation of flow conditioner upstream of the orifice plate flowmeter is also need to be addressed. Hence, in present study, an analysis of the porosity of fractal flow conditioner towards orifice plate flowmeter’s accuracy and the best distance of fractal flow conditioner upstream of the orifice plate flowmeter was determined. In an experimental work, a different porosity of the fractal flow conditioners were installed with different distance upstream of the orifice plate in conjunction with the different disturbances to assess the effects of these devices on the measurement of the mass flow rate. Data gained for all the plates showed that there is increment of pressure drop and change in discharge coefficient of the orifice with lower β value of fractal flow conditioner. Good comparisons with the previous experimental work demonstrate the fractal flow conditioner can preserve the accuracy of metering up to the level required in the standards.


1975 ◽  
Vol 97 (4) ◽  
pp. 576-581 ◽  
Author(s):  
R. P. Benedict ◽  
J. S. Wyler ◽  
G. B. Brandt

The effect of inlet edge roundness on the discharge coefficient of an orifice plate is studied experimentally. Several methods for measuring edge roundness are discussed and applied. An optical method in particular is shown to provide reliable measurements of edge roundness. Flow results are summarized in terms of radius of curvature by the empirical equation ΔCD/CD = 0.85 ln (rk/d × 103) + 1.74.


Sign in / Sign up

Export Citation Format

Share Document