scholarly journals Electromyographic activity of head and trunk muscles in newborns

2020 ◽  
Vol 33 ◽  
Author(s):  
Samile dos Santos Barros ◽  
Renata Santiago Reges ◽  
Kaísa Trovão Diniz ◽  
Rafael Moura Miranda ◽  
José Eulálio Cabral Filho

Abstract Introduction: The electric activity of muscles can be assessed using electromyography to determine their function and help identify possible delays in motor development. Objective: Determine the amplitude of the electromyographic activity of the head and trunk flexor and extensor muscles of term and preterm newborns. Method: This is a longitudinal pilot study where 20 preterm and 20 term newborns admitted to the Prof. Fernando Figueira Institute of Comprehensive Medicine were assessed. All the newborns were evaluated between 24 and 72 hours after delivery, with the premature children assessed a second time when term equivalent age was reached at 40 weeks. Data were recorded using a surface electromyograph and the electrodes were attached to the muscle bellies of the sternocleidomastoid, upper portion of the trapezius, rectus abdominis and erector spinae muscles. Results: Comparison of the electromyographic activity between the preterm newborns showed significantly higher values in all the muscles when the group reached term equivalent age. Additionally, the electromyographic activity of the term group was greater than that obtained by the preterm newborns. Conclusion: With advancing age and maturation of the physiological systems, including the muscle system, preterm newborns tend to exhibit a similar muscle activation behavior to that of the term infants, resulting in better motor development.

2019 ◽  
Vol 28 (7) ◽  
pp. 682-691 ◽  
Author(s):  
Kunal Bhanot ◽  
Navpreet Kaur ◽  
Lori Thein Brody ◽  
Jennifer Bridges ◽  
David C. Berry ◽  
...  

Context:Dynamic balance is a measure of core stability. Deficits in the dynamic balance have been related to injuries in the athletic populations. The Star Excursion Balance Test (SEBT) is suggested to measure and improve dynamic balance when used as a rehabilitative tool.Objective:To determine the electromyographic activity of the hip and the trunk muscles during the SEBT.Design:Descriptive.Setting:University campus.Participants:Twenty-two healthy adults (11 males and 11 females; 23.3 [3.8] y, 170.3 [7.6] cm, 67.8 [10.3] kg, and 15.1% [5.0%] body fat).Intervention:Surface electromyographic data were collected on 22 healthy adults of the erector spinae, external oblique, and rectus abdominis bilaterally, and gluteus medius and gluteus maximus muscle of the stance leg. A 2-way repeated measures analysis of variance was used to determine the interaction between the percentage maximal voluntary isometric contraction (%MVIC) and the reach directions. The %MVIC for each muscle was compared across the 8 reach directions using the Sidak post hoc test withαat .05.Main Outcome Measures:%MVIC.Results:Significant differences were observed for all the 8 muscles. Highest electromyographic activity was found for the tested muscles in the following reach directions—ipsilateral external oblique (44.5% [38.4%]): anterolateral; contralateral external oblique (52.3% [40.8%]): medial; ipsilateral rectus abdominis (8% [6.6%]): anterior; contralateral rectus abdominis (8% [5.3%]): anteromedial; ipsilateral erector spinae (46.4% [20.2%]): posterolateral; contralateral erector spinae (33.5% [11.3%]): posteromedial; gluteus maximus (27.4% [11.7%]): posterior; and gluteus medius (54.6% [26.1%]): medial direction.Conclusions:Trunk and hip muscle activation was direction dependent during the SEBT. This information can be used during rehabilitation of the hip and the trunk muscles.


Author(s):  
Yuki Kurokawa ◽  
Satoshi Kato ◽  
Satoru Demura ◽  
Kazuya Shinmura ◽  
Noriaki Yokogawa ◽  
...  

BACKGROUND: Abdominal bracing is effective in strengthening the trunk muscles; however, assessing performance can be challenging. We created a device for performing abdominal trunk muscle exercises. The effectiveness of this device has not yet been evaluated or compared OBJECTIVE: We aimed to quantify muscle activity levels during exercise using our innovative device and to compare them with muscle activation during abdominal bracing maneuvers. METHODS: This study included 10 men who performed abdominal bracing exercises and exercises using our device. We measured surface electromyogram (EMG) activities of the rectus abdominis (RA), external oblique, internal oblique (IO), and erector spinae (ES) muscles in each of the exercises. The EMG data were normalized to those recorded during maximal voluntary contraction (%EMGmax). RESULTS: During the bracing exercise, the %EMGmax of IO was significantly higher than that of RA and ES (p< 0.05), whereas during the exercises using the device, the %EMGmax of IO was significantly higher than that of ES (p< 0.05). No significant difference was observed in the %EMGmax of any muscle between bracing exercises and the exercises using the device (p= 0.13–0.95). CONCLUSIONS: The use of our innovative device results in comparable activation to that observed during abdominal bracing.


2000 ◽  
Vol 89 (3) ◽  
pp. 967-976 ◽  
Author(s):  
Paul W. Hodges ◽  
Simon C. Gandevia

In humans, when the stability of the trunk is challenged in a controlled manner by repetitive movement of a limb, activity of the diaphragm becomes tonic but is also modulated at the frequency of limb movement. In addition, the tonic activity is modulated by respiration. This study investigated the mechanical output of these components of diaphragm activity. Recordings were made of costal diaphragm, abdominal, and erector spinae muscle electromyographic activity; intra-abdominal, intrathoracic, and transdiaphragmatic pressures; and motion of the rib cage, abdomen, and arm. During limb movement the diaphragm and transversus abdominis were tonically active with added phasic modulation at the frequencies of both respiration and limb movement. Activity of the other trunk muscles was not modulated by respiration. Intra-abdominal pressure was increased during the period of limb movement in proportion to the reactive forces from the movement. These results show that coactivation of the diaphragm and abdominal muscles causes a sustained increase in intra-abdominal pressure, whereas inspiration and expiration are controlled by opposing activity of the diaphragm and abdominal muscles to vary the shape of the pressurized abdominal cavity.


2015 ◽  
Vol 9 (2) ◽  
Author(s):  
Johann Peter Kuhtz-Buschbeck ◽  
Antonia Frendel

<p>Background: Arm swing is deliberately emphasized during power walking, a popular aerobic fitness exercise. Electromyographic (EMG) activation curves of arm and shoulder muscles during power walking have not yet been examined. Aim: To describe the amount and pattern of EMG activity of upper limb muscles during power walking. Data are compared to normal walking and jogging. Method:  Twenty volunteers were examined on a treadmill at 6 km/h during (a) normal walking, (b) power walking, (c) jogging. EMG data were collected for the trapezius (TRAP), anterior (AD) and posterior deltoid (PD), biceps (BIC), triceps (TRI), latissimus dorsi (LD) and erector spinae (ES) muscles. Results:  Activity of four muscles (AD, BIC, PD, TRAP) was three- to fivefold stronger during power walking than normal walking. Smaller significant increases involved the TRI, LD and ES. Two muscles (AD, TRAP) were more active during power walking than running. Normal walking and power walking involved similar EMG patterns of PD, LD, ES, while EMG patterns of running and walking differed. Interpretation: Emphasizing arm swing during power walking triples the EMG activity of upper limb muscles, compared to normal walking. Similar basic temporal muscle activation patterns in both modes of walking indicate a common underlying motor program. </p>


2015 ◽  
Vol 9 (2) ◽  
Author(s):  
Johann Peter Kuhtz-Buschbeck ◽  
Antonia Frendel

Background: Arm swing is deliberately emphasized during power walking, a popular aerobic fitness exercise. Electromyographic (EMG) activation curves of arm and shoulder muscles during power walking have not yet been examined. Aim: To describe the amount and pattern of EMG activity of upper limb muscles during power walking. Data are compared to normal walking and jogging. Method: Twenty volunteers were examined on a treadmill at 6 km/h during (a) normal walking, (b) power walking, (c) jogging. EMG data were collected for the trapezius (TRAP), anterior (AD) and posterior deltoid (PD), biceps (BIC), triceps (TRI), latissimus dorsi (LD) and erector spinae (ES) muscles. Results: Activity of four muscles (AD, BIC, PD, TRAP) was three- to fivefold stronger during power walking than normal walking. Smaller significant increases involved the TRI, LD and ES. Two muscles (AD, TRAP) were more active during power walking than running. Normal walking and power walking involved similar EMG patterns of PD, LD, ES, while EMG patterns of running and walking differed. Interpretation: Emphasizing arm swing during power walking triples the EMG activity of upper limb muscles, compared to normal walking. Similar basic temporal muscle activation patterns in both modes of walking indicate a common underlying motor program.


1999 ◽  
Author(s):  
Maruti R. Gudavalli ◽  
Jerrilyn A. Backman ◽  
Steven J. Kirstukas ◽  
Anant V. Kadiyala ◽  
Avinash G. Patwardhan ◽  
...  

Abstract The objective of this study was to determine the electromyographic (EMG) activity of the superficial muscles during the treatment of low back patients during a conservative procedure known as the Cox flexion-distraction procedure. A total of 33 low back pain patients were recruited for this study from chiropractic and allopathic orthopedic clinics. EMG signals were collected while the patient was in a prone relaxed position, during the treatment using the flexion-distraction procedure, and during maximum voluntary exertions in the three planes (flexion, extension, left and right lateral bending, and left and right twisting). The mean values of the Root Mean Square (RMS) values of EMG ratios during treatment versus resting indicate that the muscles are active during the treatment. This activity is more than the activity at rest. However the mean values of the RMS EMG ratios (during treatment versus maximum voluntary contraction) are small indicating that the muscle activity during treatment may not influence the treatment loads. The left and right muscles in all muscle groups were similarly active. During the treatment, erector spinae muscles were the most active, followed by the external oblique, and the rectus abdominus muscles. The results from this study provide quantitative data for the muscle activity during the flexion-distraction treatment. This information can be incorporated into computer models to estimate the loads generated during the flexion-distraction treatment due to the muscle activity compared to the loads generated by the chiropractic physician.


2016 ◽  
Vol 32 (5) ◽  
pp. 526-531 ◽  
Author(s):  
Dean C. Hay ◽  
Mark P. Wachowiak ◽  
Ryan B. Graham

Advances in time-frequency analysis can provide new insights into the important, yet complex relationship between muscle activation (ie, electromyography [EMG]) and motion during dynamic tasks. We use wavelet coherence to compare a fundamental cyclical movement (lumbar spine flexion and extension) to the surface EMG linear envelope of 2 trunk muscles (lumbar erector spinae and internal oblique). Both muscles cohere to the spine kinematics at the main cyclic frequency, but lumbar erector spinae exhibits significantly greater coherence than internal oblique to kinematics at 0.25, 0.5, and 1.0 Hz. Coherence phase plots of the 2 muscles exhibit different characteristics. The lumbar erector spinae precedes trunk extension at 0.25 Hz, whereas internal oblique is in phase with spine kinematics. These differences may be due to their proposed contrasting functions as a primary spine mover (lumbar erector spinae) versus a spine stabilizer (internal oblique). We believe that this method will be useful in evaluating how a variety of factors (eg, pain, dysfunction, pathology, fatigue) affect the relationship between muscles’ motor inputs (ie, activation measured using EMG) and outputs (ie, the resulting joint motion patterns).


BMJ Open ◽  
2014 ◽  
Vol 4 (10) ◽  
pp. e005560 ◽  
Author(s):  
Rafael Moura Miranda ◽  
José Eulálio Cabral Filho ◽  
Kaísa Trovão Diniz ◽  
Geisy Maria Souza Lima ◽  
Danilo de Almeida Vasconcelos

ObjectiveTo compare the electromyographic activity of preterm newborns placed in the kangaroo position with the activity of newborns not placed in this position.DesignA cohort study.SettingA Kangaroo Unit sector and a Nursery sector in a secondary and tertiary care at a mother-child hospital in Recife, Brazil.ParticipantsPreterm infants of gestational age 27–34 weeks (n=38) and term infants (n=39).Primary and secondary outcome measuresSurface electromyography was used to investigate muscle activity in the brachial biceps at rest. 3 groups were designed: (1) preterm newborns in the kangaroo position (PT-KAN), where the newborn remains in a vertical position, lying face down, with limbs flexed, dressed in light clothes, maintaining skin-to-skin contact with the adult's thorax. Her electromyographic activity was recorded at 0 h (immediately before starting this position), and then at 48 h after the beginning of the position (but newborns were kept in the kangaroo position for 8–12 h per day) and at term equivalent age (40±1 weeks); (2) preterm newborns not in the kangaroo position (PT-NKAN), in which measurements were made at 0 h and 48 h; and (3) term newborns (T), in which measurements were made at 24 h of chronological age.ResultsThe Root Mean Square (RMS) values showed significant differences among groups (F(5,108)=56.69; p<0.001). The multiple comparisons showed that RMS was greater at 48 h compared to 0 h in the preterm group in the kangaroo position, but not in the group not submitted in the kangaroo position. The RMS in the term equivalent aged group in the kangaroo position was also greater when compared with those in the term group.ConclusionsThe kangaroo position increases electromyographic activity in the brachial biceps of preterm newborns and those who have reached the age equivalent to term.


Author(s):  
Jaehyun Jung ◽  
Kewwan Kim ◽  
Sungjae Choi ◽  
Gwangyu Song ◽  
Young Ryu ◽  
...  

Postural control during walking is maintained by the combination of various factors. Among these factors, adjustment of trunk movement is essential for maintaining postural control, and the response of muscles to unpredictable stimuli affects postural control. Loss of balance while walking increases the risk of accidents, the frequency of which depends on age and sex. In this study, we investigated whether there was a difference in the movement time of trunk muscles to sudden stimulation while walking according to age and sex. Fourteen healthy individuals aged 20–30 years (6 men, 8 women) and 12 individuals aged 50–70 years (4 men, 8 women) were included in the study. Movement time of bilateral erector spinae and rectus abdominis muscles in response to visual stimulation during walking was examined using surface electromyography. Movement time was calculated as the total muscle activation time excluding the reaction time. This study revealed no significant differences in movement time of the erector spinae muscles according to sex or age. The role of the rectus abdominis muscles in maintaining posture during walking was insignificant. In conclusion, the movement time of trunk muscles in response to sudden visual stimulation during walking did not differ by age or sex, and the difference in accident frequency may be associated with deterioration of other factors required to maintain posture.


Author(s):  
Darien T. Pyka ◽  
Pablo B. Costa ◽  
Jared W. Coburn ◽  
Lee E. Brown

Background: A new fitness trend incorporates stability exercises that challenges trunk muscles and introduces crawling as an exercise, but has yet to be investigated for muscle activity. Purpose: To compare the effects of static (STA), stationary (STN), and traveling (TRV) trunk exercises on muscle activation of the rectus abdominis, rectus femoris, external oblique, and erector spinae using surface electromyography (EMG). Methods: Seventeen recreationally active women (mean age ± SD = 22.4 ± 2.4 years, body mass 62.9 ± 6.9 kg, height 165.1 ± 5.8 cm) and twenty-three men (23.6 ±3.9 years, 83.2 ±17.1 kg, 177.1 ± 9.1 cm) volunteered to participate in this study. Subjects performed maximal voluntary contractions for normalization of each muscle’s EMG activity. They then performed the three exercises in random order for thirty seconds each with a two-minute rest in between. Results: For the rectus abdominis, STA was significantly lower than STN (P = 0.003) and TRV (P = 0.001). For the external oblique, STA was significantly lower than STN (P = 0.001) and TRV (P = 0.001) and STN was significantly greater than TRV (P = 0.009). For the erector spinae and rectus femoris, STA was significantly lower than STN (P = 0.001) and TRV (P = 0.001) Conclusions: There was greater muscle activation in all muscles tested in the stationary and traveling exercises versus the static. Strength and conditioning coaches and allied health professionals could potentially use stationary and traveling forms of trunk stabilization exercises as a viable strategy to increase muscle activation.


Sign in / Sign up

Export Citation Format

Share Document