scholarly journals DRY MATTER DECOMPOSITION OF COVER CROPS IN A NO-TILLAGE COTTON SYSTEM

2018 ◽  
Vol 31 (2) ◽  
pp. 264-270 ◽  
Author(s):  
JOÃO LUÍS DA SILVA FILHO ◽  
ANA LUÍZA DIAS COELHO BORIN ◽  
ALEXANDRE CUNHA DE BARCELLOS FERREIRA

ABSTRACT No-tillage cotton systems require soil coverage with cover crop residue for a longer time due to the late cycle of cotton. However, decomposition rates may vary between cover crops, and the adjustment of models to describe it is critical to no-tillage cotton management. Two non-linear regression models, exponential (EM) and Michaelis-Menten (MM), were adjusted to dry matter decomposition of cover crops in a cotton no-tillage system, in Brazil. Three field trials were performed in 2012 for the cover crops Urochloa ruziziensis (brachiaria), Pennisetum glaucum (pearl millet), and Cajanus cajan (pigeon pea). Samples of cover crop were collected at 20, 50, 70, 110, 140, and 170 days after sowing upland cotton to measure dry matter decomposition. MM showed better adjustment than EM for all cover crops. The estimations of half-life parameters were different between the cover crops, suggesting that each cover crop has its own rate of decomposition. For pearl millet, brachiaria, and pigeon pea, the half-life estimation by exponential model was over the MM in 9, 12, and 12 days.

2021 ◽  
Vol 34 (1) ◽  
pp. 50-57
Author(s):  
FERNANDO COUTO DE ARAÚJO ◽  
ADRIANO STEPHAN NASCENTE ◽  
JULIANA LOURENÇO NUNES GUIMARÃES ◽  
VINÍCIUS SILVA SOUSA ◽  
MARCO ANTÔNIO MOREIRA DE FREITAS ◽  
...  

ABSTRACT Cover crops can provide suppression of weeds and together with chemical control make the proper management of weeds in agricultural areas. The objective of this study was to evaluate the effect of cover crop cultivation during the off-season on weed development in a no-tillage area. The experimental design was in randomized blocks scheme with six treatments and four replications. The treatments were: fallow (control), millet (Pennisetum glaucum) + crotalaria (Crotalaria spectabilis + C. juncea + C. ochroleuca), millet + pigeon pea (Cajanus cajans), millet + Urochloa ruziziensis, millet + Urochloa ruziziensis + pigeon pea and millet + buckwheat (Fagopyrum esculentum. The evaluations were done at 30, 75 and 225 days after sowing of the cover crops (DAS). The main growth weed species in the area were Cenchrus echinathus, Euphorbia heterophylla and Digitaria insularis. Fallow treatment showed greater number of weed species with density of 184 plants m-2, 9.0 species and with 527.8 g m-2 of dry matter mass at 225 DAS. In all treatments verified reduction in the density and mass of weeds dry matter compared to the fallow, with average of 30 plants m-2, 5.8 species and 7.9 g m-2 at 225 DAS, respectively. The use of cover crops is an important strategy for weed control in agricultural areas.


2016 ◽  
Vol 26 (5) ◽  
pp. 604-613 ◽  
Author(s):  
John E. Beck ◽  
Michelle S. Schroeder-Moreno ◽  
Gina E. Fernandez ◽  
Julie M. Grossman ◽  
Nancy G. Creamer

Summer cover crop rotations, compost, and vermicompost additions can be important strategies for transition to organic production that can provide various benefits to crop yields, nitrogen (N) availability, and overall soil health, yet are underused in strawberry (Fragaria ×ananassa) production in North Carolina. This study was aimed at evaluating six summer cover crop treatments including pearl millet (Pennisetum glaucum), soybean (Glycine max), cowpea (Vigna unguiculata), pearl millet/soybean combination, pearl millet/cowpea combination, and a no cover crop control, with and without vermicompost additions for their effects on strawberry growth, yields, nutrient uptake, weeds, and soil inorganic nitrate-nitrogen and ammonium-nitrogen in a 2-year field experiment. Compost was additionally applied before seeding cover crops and preplant N fertilizer was reduced by 67% to account for organic N additions. Although all cover crops (with compost) increased soil N levels during strawberry growth compared with the no cover crop treatment, cover crops did not impact strawberry yields in the first year of the study. In the 2nd year, pearl millet cover crop treatments reduced total and marketable strawberry yields, and soybean treatments reduced marketable strawberry yields when compared with the no cover crop treatment, whereas vermicompost additions increased strawberry biomass and yields. Results from this study suggest that vermicompost additions can be important sustainable soil management strategies for transitional and certified organic strawberry production. Summer cover crops integrated with composts can provide considerable soil N, reducing fertilizer needs, but have variable responses on strawberry depending on the specific cover crop species or combination. Moreover, these practices are suitable for both organic and conventional strawberry growers and will benefit from longer-term studies that assess these practices individually and in combination and other benefits in addition to yields.


Weed Science ◽  
2021 ◽  
pp. 1-26
Author(s):  
Roberto Botelho Ferraz Branco ◽  
Fernando de Carvalho ◽  
João Paulo de Oliveira ◽  
Pedro Luis da Costa Alves

Abstract Cover crop residue left on the soil surface as organic mulch in no-tillage crop production provides several environmental benefits, including weed suppression. Thus, many farmers who use cover crops attempt to reduce the use of agricultural inputs, especially herbicides. Therefore, our objectives were to study the potential of different cover crop species to suppress weeds and produce an in situ organic mulch, and evaluate the effect of the organic mulch with and without spraying glyphosate on weed suppression for vegetable (tomato (Solanum lycopersicum L. and broccoli (Brassica oleracea L. var. botrytis) growth and yield. Five cover crop treatments (sunn hemp (Crotalaria juncea L.), jack bean [Canavalia ensiformis (L.) DC.], pearl millet [Pennisetum glaucum (L.) R. Br.], grain sorghum [Sorghum bicolor (L.) Moench ssp. bicolor] and a no-cover crop (control)) were used in the main plots; and spraying or no spraying glyphosate on the flattened cover crop in the sub plots of split-plot experimental design. Organic mulch from pearl millet, sorghum and sunn hemp resulted in lower weed biomass during the early season of both tomato and broccoli than jack bean and no-cover crop (control). Spraying glyphosate after roller crimping reduced weed biomass by 103 g m−2 and 20 g m−2 by 45 and 60 days after transplanting (DAT) of tomato, respectively and resulted in a better tomato yield compared to non spraying. Glyphosate reduced weed biomass by 110 g m−2 in the early season of broccoli (30 DAT), but did not affect yield. Terminating high biomass cover crops with a roller crimper is a promising technique for weed management in vegetable crops, which has the potential to reduce or even eliminate the need for herbicide.


Weed Science ◽  
2020 ◽  
Vol 68 (6) ◽  
pp. 673-680
Author(s):  
Gabrielle de Castro Macedo ◽  
Caio Antonio Carbonari ◽  
Edivaldo Domingues Velini ◽  
Giovanna Larissa Gimenes Cotrick Gomes ◽  
Ana Karollyna Alves de Matos ◽  
...  

AbstractMore than 80% of soybean [Glycine max (L.) Merr.] in Brazil is cultivated in no-till systems, and although cover crops benefit the soil, they may reduce the amount of residual herbicides reaching the soil, thereby decreasing herbicide efficacy. The objective of this study was to evaluate sulfentrazone applied alone, sequentially after glyphosate, and in a tank mixture with glyphosate before planting no-till soybean. Experiments were performed in two cover crop systems: (1) pearl millet [Pennisetum glaucum (L.) R. Br.] and (2) forage sorghum [Sorghum bicolor (L.) Moench ssp. bicolor]. The treatments tested were: glyphosate (720 g ae ha−1) at 20 d before sowing (DBS) followed by sulfentrazone (600 g ai ha−1) at 10 DBS; glyphosate + sulfentrazone (720 g ae ha−1 + 600 g ai ha−1) for cover crop desiccation at 10 DBS; and sulfentrazone alone at 10 DBS without a cover crop. The accumulation of straw was 31% greater using sorghum rather than pearl millet. In the sorghum system, the concentration of sulfentrazone at 0 to 10 cm was 57% less with sequential application and 92% less with the tank mixture compared with the treatment without cover crop straw at 1 d after application (DAA). The same occurred in the pearl millet system, where the reduction was 33% and 80% for the sequential application and tank mixture, respectively. The absence of a cover crop resulted in greater sulfentrazone concentrations in the top layer of the soil when compared with the sequential application or tank mixture. At 31 and 53 DAA, the concentration of sulfentrazone at 10 to 20 and 20 to 40 cm did not differ among treatments. Precipitation of 90 mm was enough to remove the herbicide from the cover crop straw at 31 DAA when using sequential application. An additional 90-mm precipitation was necessary to promote the same result when using the tank mixture.


2016 ◽  
Vol 51 (9) ◽  
pp. 1668-1676 ◽  
Author(s):  
Géssica Pereira de Souza ◽  
Cícero Célio de Figueiredo ◽  
Djalma Martinhão Gomes de Sousa

Abstract The objective of this work was to evaluate the effects of soil management systems, cover crops, and phosphate fertilization on soil humic fractions in a long-term experiment. The treatments consisted of conventional tillage and no-tillage with pearl millet (Pennisetum glaucum) or velvet bean (Mucuna aterrima) as cover crops, at two doses of phosphorous: 0 and 100 kg ha-1 P2O5 per year. Soil samples were taken 11 years after the establishment of the experiment and analyzed for soil total organic carbon and carbon content of humic fractions at 0.00-0.05, 0.05-0.10, and 0.10-0.20-m depths. The humic fractions are sensitive to soil management, except free fulvic acid, which was the only one that did not reduce its carbon contents on the surface layer (0.00-0.05 m) with conventional tillage. The main changes occurred on the soil surface layer, in which the no-tillage system with pearl millet as a cover crop provided the highest carbon levels in humic fractions. Long-term phosphate fertilization under no-tillage, with pearl millet as a cover crop, promotes the accumulation of organic carbon in soil humic fractions.


2007 ◽  
Vol 22 (3) ◽  
pp. 168-180 ◽  
Author(s):  
A.J. Franzluebbers ◽  
J.A. Stuedemann

AbstractIntegration of crops and livestock has the potential to provide a multitude of benefits to soil and water conservation and nutrient cycling efficiency, while reducing economic risk and increasing profitability. We conducted a field study from May 2002 to October 2005 to determine crop and cattle responses to three management factors on a Typic Kanhapludult in Georgia, USA. Summer grain/winter cover [sorghum (Sorghum bicolorL. Moench) or corn (Zea maysL.)/rye (Secale cerealeL.)] and winter grain/summer cover [wheat (Triticum aestivumL.)/pearl millet (Pennisetum glaucumL. R. Br.)] were managed with either conventional tillage (CT) or no tillage (NT) and with or without cattle grazing of cover crops. All crops were successfully established, irrespective of tillage and cover crop management. Although pearl millet was often lower in the plant stand with NT than with CT, plants compensated with greater biomass on an area basis. Across years, grain yield of sorghum (1.9 Mg ha−1during three seasons) and corn (7.3 Mg ha−1in one season) was 25% greater under NT than under CT when the cover crop was not grazed. Wheat grain yield (2.7 Mg ha−1during three seasons) was unaffected by tillage and cover crop management. Unharvested stover production of summer grain crops was greater with NT than with CT (6.5 versus 4.1 Mg ha−1;P<0.001). Grazing rye rather than allowing it to accumulate as surface residue reduced summer grain yield 23% and reduced standing grain-crop dry matter 26% under NT, but had no effect under CT. In contrast, grazing pearl millet rather than allowing it to accumulate as surface residue increased wheat standing dry matter yield by 25±14% (mean±standard deviation among 3 years and two tillage systems). Ungrazed cover crop production was greater under NT than under CT for rye (7.0 versus 6.0 Mg ha−1;P=0.03) and pearl millet (10.2 versus 7.6 Mg ha−1;P=0.01). Calf daily gain was either greater or tended to be greater under NT than under CT on rye (2.27 versus 2.09 kg head−1d−1;P=0.15) and pearl millet (2.05 versus 1.81 kg head−1d−1;P=0.05). Total cattle gain per grazing season was either greater or tended to be greater with NT than with CT on rye (350 versus 204 kg ha−1;P=0.01) and pearl millet (324 versus 277 kg ha−1;P=0.15). Net return over variable costs was greater with grazing than without grazing of cover crops (US$302 versus −US$63 ha−1;P<0.001). Livestock grazing of cover crops had variable effects on subsequent crop production, but increased economic return and diversity overall. Therefore, an integrated crop–livestock production system with conservation tillage is recommended as a viable option for producers to diversify farming operations to avoid risk, improve ecological production of crops, and potentially avoid environmental damage from soil erosion and nutrient loss.


2013 ◽  
Vol 37 (6) ◽  
pp. 1628-1640 ◽  
Author(s):  
Carlos Alexandre Costa Crusciol ◽  
Jayme Ferrari Neto ◽  
Rogério Peres Soratto ◽  
Claudio Hideo Martins da Costa

In a no-tillage system, cover crops must be used that combine shoot dry matter production and nutrient recycling. The aim of this study was to evaluate shoot dry matter production, decomposition rate and macronutrient and silicon release from pigeonpea and pearl millet in monoculture and intercropping systems. A randomized block design was used with a 3 x 6 factorial arrangement, with four replications. The first factor consisted of three cover crops (pigeonpea, pearl millet and intercropping of these cover crops) and the second consisted of six sampling times [0, 18, 32, 46, 74 and 91 days after desiccation (DAD)]. Pearl millet produced greater amounts of shoot dry matter and content of N, P, K, Ca, Mg, S, C and Si and had a higher decomposition rate and macronutrient and Si release than the other cover crops. The rates of decomposition and daily nutrient release from shoot dry matter were highest in the first period of evaluation (0-18 DAD). Over time, the C/N, C/P and C/S ratios increased, while C/Si and the decomposition rate decreased. Potassium was the nutrient most quickly released to the soil, especially from pearl millet residue. Silicon had the lowest release rate, with 62, 82 and 74 % of the total content in the shoot dry matter remaining in the last evaluation of pearl millet, pigeonpea and in the intercrop system, respectively. The shoot dry matter from the intercrop system had a different decomposition rate than that from the pearl millet monoculture and pigeonpea. Plants with greater shoot dry matter production and lower C/Si ratio are more effective in a no-tillage system for providing a more complete and persistent soil cover.


2021 ◽  
pp. 1-15
Author(s):  
João Paulo Gonsiorkiewicz Rigon ◽  
Juliano Carlos Calonego ◽  
Laércio Augusto Pivetta ◽  
Gustavo Castoldi ◽  
Juan Piero Antonio Raphael ◽  
...  

Abstract Crop rotations under no-till (NT) have been a strategy to increase soil organic carbon (SOC) and mitigate greenhouse gas (GHG) emissions, enhancing the cropping system efficiency. However, there is still controversy on the role of grasses and legumes, and species diversity and their impacts. This study aimed to assess the GHG emissions, SOC, and Nitrogen (TN) in a soybean production system managed under NT in rotation with different species in the fall–winter and the spring seasons. Main plots during the fall–winter were (1) Triticale (x Triticosecale) and (2) Sunflower (Helianthus annuus). Subplots established in the spring were (a) Sunn hemp (Crotalaria juncea), (b) Sorghum (Sorghum bicolor), (c) Pearl millet (Pennisetum glaucum), plus a (d) Fallow treatment. Soybean was grown every year in the summer, in sub-subplots. The GHG emission was affected according to crop species. In the spring, Sunn hemp emitted more nitrous oxide (N2O) (0.82 kg ha−1) than fallow (0.58 kg ha−1); however, the high C and N inputs by the legume and also other cover crop residues reduced the relative emissions compared with fallow. Growing pearl millet or Sunn hemp as a spring cover crop increases SOC by 7% on average compared with fallow. The N2O emission of Sunn hemp accounted for only 0.28% of the total N accumulated in the legume residues, notably lower than IPCC estimates. In the fall–winter, Triticale increased SOC by 7%, decreased CO2 emission by 18%, and emitted 20% lower GHG to produce the same soybean yield compared with sunflower. Soybean rotation with triticale in fall–winter and Sunn hemp or pearl millet in spring decreases GHG emissions. Our results indicate that the right choice of species in rotation with soybean under NT increases SOC and may offset GHG emissions from tropical soils. It may be an important tool in mitigating potential global warming.


HortScience ◽  
2011 ◽  
Vol 46 (7) ◽  
pp. 985-991 ◽  
Author(s):  
Benjamin C. Garland ◽  
Michelle S. Schroeder-Moreno ◽  
Gina E. Fernandez ◽  
Nancy G. Creamer

The effects of eight summer cover crop treatments combined with two arbuscular mycorrhizal (AM) fungal inoculants on strawberry growth and yields were examined in a 2-year field experiment. Cover crop treatments included 1) sudangrass [Sorghum bicolor (L.) Moench cv. Piper]; 2) pearl millet [Pennisetum glaucum (L.) R.Br. cv. 102 M Hybrid]; 3) soybean [Glycine max (L.) Merrill cv. Laredo]; 4) velvetbean [Mucuna deeringiana (Bort) Merr. cv. Georgia Bush]; 5) sudangrass/velvetbean combination; 6) pearl millet/soybean combination; 7) a non-mycorrhizal host consisting of rape (Brassica napus L. var. napus cv. Dwarf Essex) and buckwheat (Fagopyrum esculentum Moench) in Year 1 and Year 2, respectively; and 8) no cover crop control. Strawberry tips were inoculated with either a native mixture of several AM fungal species or a single species sold commercially, Glomus intraradices. Cover crop treatments were assessed for their aboveground biomass and nutrient uptake as well as their impacts on weed abundance and diversity, soil nutrients, and parasitic nematode populations. Cover crop and AM treatments were assessed for their impact on strawberry growth, yields, AM root colonization, and nutrient uptake. Grass-based cover crop treatments, particularly pearl millet, produced the most aboveground biomass. In both years, all cover crop treatments reduced summer weed biomass compared with the control. Neither cover crop nor AM treatments had an effect on overall strawberry plant growth or yields in either year, although some differences existed at specific growth periods. The results suggest that cover crops are a viable strategy for reducing summertime weeds and that background, native populations of AM fungi in the soil may be just as effective as a commercially available species. It is likely that no overall yield benefit was found among treatments for two reasons: 1) nutrients, especially nitrogen, were not limiting; and 2) the cover crop growth window may have been too short for a significant impact on strawberries over two seasons.


2018 ◽  
Vol 48 (2) ◽  
pp. 153-162 ◽  
Author(s):  
Orivaldo Arf ◽  
José Roberto Portugal ◽  
Salatiér Buzetti ◽  
Ricardo Antônio Ferreira Rodrigues ◽  
Marco Eustáquio de Sá

ABSTRACT The Brazilian Savannah region presents a great potential for the expansion of upland rice crops. However, studies are necessary to identify practices that can improve the crop performance, especially in no-tillage systems. This study aimed to assess the effect of cover crops in association with corn on the development and yield of rice cultivated in rotation and cover fertilized with nitrogen doses. The sprinkler irrigation system was used and the experiment was developed in the 2014/2015 and 2016/2017 harvest years, using a randomized block design, in a 5 × 4 factorial scheme. The treatments consisted of the crop remains combinations of single corn crop, corn + Crotalaria spectabilis, corn + pigeon pea, corn + jack bean and corn + Urochloa ruziziensis, as well as cover nitrogen doses (0 kg ha-1, 40 kg ha-1, 80 kg ha-1 and 120 kg ha-1) in the rice. The cultivation of upland rice in rotation with corn + pigeon pea was favored by the greater soil cover and nitrogen supply via cycling, if compared to the rotation with single corn crop. The intercropped corn + pigeon pea cultivation in the previous summer resulted in a 15 % increase in the yield of rice grains seeded in the rotation, when compared to the single corn crop. The cover nitrogen application positively influenced the grain yield with the maximum estimated doses of 46 kg ha-1 and 105 kg ha-1 of nitrogen, respectively in the 2014/2015 and 2016/2017 harvest years.


Sign in / Sign up

Export Citation Format

Share Document