scholarly journals Diffusion tensor MR imaging evaluation of the corpus callosum of patients with multiple sclerosis

2008 ◽  
Vol 66 (3a) ◽  
pp. 449-453 ◽  
Author(s):  
Fernanda Rueda ◽  
Luiz Celso Hygino Jr ◽  
Romeu Cortês Domingues ◽  
Cláudia C. Vasconcelos ◽  
Regina M. Papais-Alvarenga ◽  
...  

OBJECTIVE: To evaluate the fractional anisotropy (FA) values of the normal-appearing white matter of the corpus callosum (CC) in patients with relapsing-remitting multiple sclerosis (MS). METHOD: Fifty-seven patients with diagnosis of relapsing-remitting MS and 47 age- and gender-matched controls were studied. A conventional MR imaging protocol and a DTI sequence were performed. One neuroradiologist placed the regions of interest (ROIs) in the FA maps in five different portions of the normal-apearing CC (rostrum, genu, anterior and posterior portion of the body and splenium) in all cases. The statistical analysis was performed with the Mann-Whitney U test and p<0.05 was considered statistically significant. RESULTS: The FA values were lower in the MS patients compared with the controls (p<0.05) in the following CC regions: rostrum (0.720 vs 0.819), anterior body (0.698 vs 0.752), posterior body (0.711 vs 0.759) and splenium (0.720 vs 0.880). CONCLUSION: In this series, there was a robust decrease in the FA in all regions of the normal-appearing CC, being significant in the rostrum, body and splenium. This finding suggests that there is a subtle and diffuse abnormality in the CC, which could be probably related to myelin content loss, axonal damage and gliosis.

2004 ◽  
Vol 10 (2) ◽  
pp. 188-196 ◽  
Author(s):  
Emmanuelle Cassol ◽  
Jean-Philippe Ranjeva ◽  
Danielle Ibarrola ◽  
Claude Mékies ◽  
Claude Manelfe ◽  
...  

Our objectives were to determine the reproducibility of diffusion tensor imaging (DTI) in volunteers and to evaluate the ability of the method to monitor longitudinal changes occurring in the normal-appearing white matter (NAWM) of patients with multiple sclerosis (MS). DTI was performed three-mo nthly for one year in seven MS patients: three relapsing-remitting (RRMS), three secondary progressive (SPMS) and one relapsing SP. They were selected with a limited cerebral lesion load. Seven age- and sex-matched controls also underwent monthly examinations for three months. Diffusivity and anisotropy were quantified over the segmented whole supratentorial white matter, with the indices of trace (Tr) and fractional anisotropy (FA). Results obtained in volunteers show the reproducibility of the method. Patients had higher trace and lower anisotropy than matched controls (P B-0.0001). O ver the follow-up, both Tr and FA indicated a recovery after the acute phase in RRMS and a progressive shift towards abnormal values in SPMS. A lthough this result is not statistically significant, it suggests that DTI is sensitive to microscopic changes occurring in tissue of normal appearance in conventional images and could be useful for monitoring the course of the disease, even though it was unable to clearly distinguish between the various physiopathological processes involved.


2007 ◽  
Vol 65 (3a) ◽  
pp. 561-564 ◽  
Author(s):  
Rachel E. Maia de Andrade ◽  
Emerson L. Gasparetto ◽  
Luiz Celso Hygino Cruz Jr. ◽  
Fabiana Brito Ferreira ◽  
Roberto Cortês Domingues ◽  
...  

OBJECTIVE: To study the white matter of patients with multiple sclerosis (MS) with diffusion tensor magnetic resonance (MR) imaging (DTI). METHOD: Forty patients with clinical-laboratorial diagnosis of relapsing-remitting MS and 40 age- and sex-matched controls, who underwent conventional and functional (DTI) MR imaging, were included in the study. The DTI sequences resulted in maps of fractional anisotropy (FA) and regions of interest were placed on the plaques, peri-plaque regions, normal-appearing white matter (NAWM) around the plaques, contralateral normal white matter (CNWM) and normal white matter of the controls (WMC). The FA values were compared and the statistical treatment was performed with the Mann-Whitney U test. RESULTS: The mean FA in plaques was 0.268, in peri-plaque regions 0.365, in NAWM 0.509, in CNWM 0.552 and in WMC 0.573. Statistical significant differences in FA values were observed in plaques, peri-plaque regions and in NAWM around the plaques when compared to the white matter in the control group. There was no significant difference between the FA values of the CNWM of patients with MS and normal white matter of controls. CONCLUSION: Patients with MS show difference in the FA values of the plaques, peri-plaques and NAWM around the plaques when compared to the normal white matter of controls. As a result, DTI may be considered more efficient than conventional MR imaging for the study of patients with MS.


2001 ◽  
Vol 7 (5) ◽  
pp. 290-297 ◽  
Author(s):  
Colette M Griffin ◽  
Declan T Chard ◽  
Olga Ciccarelli ◽  
Raj Kapoor ◽  
Gareth J Barker ◽  
...  

Diffusion tensor magnetic resonance imaging (DTI) indices are abnormal in patients with established multiple sclerosis (MS). The objective of this study was to examine the diffusion characteristics of MS lesions, normal appearing white matter (NAWM) and normal appearing grey matter (NAGM) in MS patients with early relapsing-remitting disease. A further objective was to investigate the relationship between three DTI parameters (fractional anisotropy (FA), mean diffusivity (MD) and volume ratio (VR)) and clinical outcome measures (Kurtzke expanded disability status scale (EDSS) and MS Functional Composite Measure) in early disease. DTI was performed in 28 patients and 27 controls. Analysis was carried out using a region of interest (ROI) approach. ROIs were placed in 12 NAWM and nine NAGM regions. Significant differences were found in FA, MD and VR between lesions and NAWM (P<0.001 for all three DTI parameters). No significant differences were found between patients and controls when examining NAWM or NAGM, although there was a trend for abnormal NAWM FA and VR in some regions. No correlation was found between DTI parameters in lesions, NAWM or NAGM and the clinical outcome measures. The lack of significant DTI abnormality in the NAWM and NAGM may reflect a lack of pathological change or a limited sensitivity of DTI using ROI methodology. Previous studies have shown abnormalities in T1 relaxation time, magnetisation transfer ratio (MTR) and N-Acetyl aspartate (NAA) in this cohort of patients, and as such, DTI using a region of interest (ROI) approach may not be as sensitive as other MR techniques in detecting subtle changes in normal appearing brain tissue in early disease.


2004 ◽  
Vol 10 (4) ◽  
pp. 392-397 ◽  
Author(s):  
Bernard D Coombs ◽  
Alan Best ◽  
Mark S Brown ◽  
David E Miller ◽  
John Corboy ◽  
...  

Lesions in the corpus callosum in multiple sclerosis (MS) include those that are hyperintense on T2-weighted images, which can be either focal (isolated) or connected, but there is evidence that the corpus callosum, similar to other white matter regions, contains normal appearing white matter (NAWM) which is abnormal based on quantitative MR methodologies. In this pilot study, diffusion tensor based measures were determined in corpus callosum from 10 patients with MS and 12 age and gender matched controls. T2-hyperintense lesions were carefully segmented out from normal appearing corpus callosum to minimize contamination of the NAWM fraction with these lesions. The orientationally averaged diffusion coefficient was increased and the fractional anisotropy reduced in the NAWM fraction of the MS patients. These results confirm prior studies which suggest that pathology in the NAWM occurs independent of focal MS lesions, and are not likely the result of sample contamination through or across slices. This injury to the NAWM may be the result of focal, microscopic T2-invisible lesions and/or secondary degeneration related to distant lesions whose related fibres cross the corpus callosum.


Brain ◽  
2020 ◽  
Author(s):  
Simona Schiavi ◽  
Maria Petracca ◽  
Peng Sun ◽  
Lazar Fleysher ◽  
Sirio Cocozza ◽  
...  

Abstract The aim of this study was to determine the feasibility of diffusion basis spectrum imaging in multiple sclerosis at 7 T and to investigate the pathological substrates of tissue damage in lesions and normal-appearing white matter. To this end, 43 patients with multiple sclerosis (24 relapsing-remitting, 19 progressive), and 21 healthy control subjects were enrolled. White matter lesions were classified in T1-isointense, T1-hypointense and black holes. Mean values of diffusion basis spectrum imaging metrics (fibres, restricted and non-restricted fractions, axial and radial diffusivities and fractional anisotropy) were measured from whole brain white matter lesions and from both lesions and normal appearing white matter of the corpus callosum. Significant differences were found between T1-isointense and black holes (P ranging from 0.005 to &lt;0.001) and between lesions’ centre and rim (P &lt; 0.001) for all the metrics. When comparing the three subject groups in terms of metrics derived from corpus callosum normal appearing white matter and T2-hyperintense lesions, a significant difference was found between healthy controls and relapsing-remitting patients for all metrics except restricted fraction and fractional anisotropy; between healthy controls and progressive patients for all metrics except restricted fraction and between relapsing-remitting and progressive multiple sclerosis patients for all metrics except fibres and restricted fractions (P ranging from 0.05 to &lt;0.001 for all). Significant associations were found between corpus callosum normal-appearing white matter fibres fraction/non-restricted fraction and the Symbol Digit Modality Test (respectively, r = 0.35, P = 0.043; r = −0.35, P = 0.046), and between black holes radial diffusivity and Expanded Disability Status Score (r = 0.59, P = 0.002). We showed the feasibility of diffusion basis spectrum imaging metrics at 7 T, confirmed the role of the derived metrics in the characterization of lesions and normal appearing white matter tissue in different stages of the disease and demonstrated their clinical relevance. Thus, suggesting that diffusion basis spectrum imaging is a promising tool to investigate multiple sclerosis pathophysiology, monitor disease progression and treatment response.


Sign in / Sign up

Export Citation Format

Share Document