scholarly journals Use of steel slag to neutralize acid mine drainage (AMD) in sulfidic material from a uranium mine

2013 ◽  
Vol 37 (3) ◽  
pp. 804-811 ◽  
Author(s):  
Camila Marcon de Carvalho Leite ◽  
Luisa Poyares Cardoso ◽  
Jaime Wilson Vargas de Mello

Acid Mine Drainage (AMD) is one of the main environmental impacts caused by mining. Thus, innovative mitigation strategies should be exploited, to neutralize acidity and prevent mobilization of trace elements in AMD. The use of industrial byproducts has been considered an economically and environmentally effective alternative to remediate acid mine drainage. Therefore, the objective of this study was to evaluate the use of steel slag to mitigate acid mine drainage in a sulfidic material from a uranium mine, as an alternative to the use of limestone. Thus, increasing doses of two neutralizing agents were applied to a sulfidic material from the uranium mine Osamu Utsumi in Caldas, Minas Gerais State. A steel slag from the company ArcelorMittal Tubarão and a commercial limestone were used as neutralizing agents. The experiment was conducted in leaching columns, arranged in a completely randomized, [(2 x 3) + 1] factorial design, consisting of two neutralizing agents, three doses and one control, in three replications, totaling 21 experimental units. Electrical conductivity (EC), pH and the concentrations of Al, As, Ca, Cd, Cu, Fe, Mn, Ni, S, Se, and Zn were evaluated in the leached solutions. The trace element concentration was evaluated by ICP-OES. Furthermore, the CO2 emission was measured at the top of the leaching columns by capturing in NaOH solution and titration with HCl, in the presence of BaCl2. An increase in the pH of the leachate was observed for both neutralizing agents, with slightly higher values for steel slag. The EC was lower at the higher lime dose at an early stage of the experiment, and CO2 emission was greater with the use of limestone compared to steel slag. A decrease in trace element mobilization in the presence of both neutralizing agents was also observed. Therefore, the results showed that the use of steel slag is a suitable alternative to mitigate AMD, with the advantage of reducing CO2 emissions to the atmosphere compared to limestone.

2012 ◽  
Vol 67 (5) ◽  
pp. 1389-1395 ◽  
Author(s):  
Natalie A. Kruse ◽  
Amy L. Mackey ◽  
Jennifer R. Bowman ◽  
Kimberly Brewster ◽  
R. Guy Riefler

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Le Tong ◽  
Ronggui Fan ◽  
Shuangchun Yang ◽  
Qiushi Zhang ◽  
Yi Pan

AbstractAcid mine drainage (AMD) which produced in the process of mining seriously pollutes the water resources and endangers the ecological environment due to its physicochemical characteristics, such as low pH, high salinity and high heavy metal concentrations. In recent decades, the treatment of AMD has become a key issue in the field of environmental protection. One important method of AMD treatment is adsorption method, and the selection of adsorbent is the key of this technique. Bentonite and steel slag are usually sintered at high temperatures to prepare bentonite–steel slag composite. AMD treatment with bentonite–steel slag composite, as a new adsorbent, is emerging as a promising treatment method by physical adsorption, ion exchange and chemical neutralization. The bentonite–steel slag composites mainly include bicomponent composite with bentonite–steel slag and multicomponent composite with bentonite–steel slag modifier. The author found that this important research question was rarely paid attention to, therefore, and the author combined with previous research and theories to promote the explanation of this problem. In this review, the technology of treatment of AMD with bentonite–steel slag composite is comprehensively discussed. Also, the role of its mechanism is also discussed in-depth. This paper provides a scientific reference on the remediation of contaminated environments.


2014 ◽  
Vol 67 (1) ◽  
pp. 107-113 ◽  
Author(s):  
Adriana Trópia de Abreu ◽  
Efigênia Miranda de Faria ◽  
Carla Thamilis Fonseca Chaves ◽  
Adilson do Lago Leite ◽  
Jorge Carvalho de Lena

Acid mine drainage is the result of the oxidation process of sulfide bearing rocks. This process occurs when the sulfide material is exposed to atmospheric conditions. Under these conditions, successive oxidation reactions yield sulfuric acid generating acidic waters. This problem becomes more serious when the surrounding rocks are not able to neutralize the acid. The low pH condition of the drained water accelerates the solubility process of solid materials (rocks, soils and sediments) and favors metal and metalloid leaching making them available to the environment, which impairs the hydric system quality. This is a quite common situation at abandoned mines where the material is exposed, as at theOsamu Utsumi Mine in Caldas, MG. The main goal of this work was to assess and compare two kinetic tests in an attempt to predict the acid generation from the waste rock of the Osamu Utsumi Mine. The tests were carried out using a Soxhlet extractor and a leaching column. The leachate from the two tests was analyzed for the physical-chemical parameters (pH, Eh and electric conductivity) and metals and metalloids.


Sign in / Sign up

Export Citation Format

Share Document