scholarly journals Effect of packing types on the dimensional accuracy of denture base resin cured by the conventional cycle in relation to post-pressing times

2004 ◽  
Vol 15 (1) ◽  
pp. 63-67 ◽  
Author(s):  
Rafael Leonardo Xediek Consani ◽  
Saide Sarckis Domitti ◽  
Marcelo Ferraz Mesquita ◽  
Simonides Consani

This study investigated the dimensional stability of denture bases influenced by packing methods, in relation to post-pressing times, in the Clássico acrylic resin which was prepared according to manufacturer recommendations. Forty maxillary wax bases were made and randomly assigned into 2 groups of 20 specimens each according to the conventional and RS system packing methods. In each method, the specimens were subdivided into immediate, 6, 12 and 24 h post-pressing times. The dough of the acrylic resin was packed in metallic flasks and processed in a water bath curing cycle at 74ºC for 9 h. After cooling at room temperature, the bases were removed from the flasks, finished and fixed on stone casts with instantaneous adhesive. The resin base-stone cast sets were transversally sectioned into 3 sections and the base-stone gap measured at 5 points in each section. The data were submitted to ANOVA and Tukey's test, which showed that the RS system had a smaller base distortion compared to conventional packing, with the exception of the 24-h post-pressing time. There was a statistically significant difference between the packing methods only in section C (posterior palatal zone). In the conventional packing method, the immediate and 6 h times demonstrated values with no statistically significant difference between them, as well as between the 12 and 24 h post-pressing times.

2018 ◽  
Vol 17 ◽  
pp. 1-9 ◽  
Author(s):  
Etiene Faria Aguiar ◽  
Rafaella Tonani ◽  
Fabiana de Goes Paiola ◽  
Michelle Alexandra Chinelatti ◽  
Carolina Noronha Ferraz de Arruda ◽  
...  

Aim: The aim of this study was to evaluate the bond strength of artificial teeth to different types of denture base resins when submitted to thermomechanical cycling (TMC). Methods: Sixty artificial mandibular first molars (Trilux, Vipi) were randomly divided into 3 groups according to denture base acrylic resins (Vipi Wave, Vipi Cril, and Vipi Cril Plus, Vipi). The teeth were fixed onto self-polymerizing acrylic resin bars (0.5 cm2 cross-section x 2 cm height), and the set was included in a metal flask using dental stone/silicone. After the dental stone was set, the bar was removed, and the denture base resin was packed and processed according to the group studied (Vipi Wave: 180 W/20 minutes + 540W/5 minutes; Vipi Cril and Vipi Cril Plus: Water bath at 74ºC for 9h). After polymerization, the samples were divided into 2 groups (n=10), according to the TMC treatment received (simulation of 5 years of mastication or not). The samples were submitted to tensile bond strength test (1 mm/min), and the data (MPa) were statistically analyzed (2-way ANOVA, Bonferroni, α=0.05). The fracture interfaces were evaluated using a stereomicroscope (50x). Results: The bond strength results showed no statistically significant difference (p>0.05) between the resins studied. TMC was significant (p<0.05), demonstrating lower values for the bond strength of artificial teeth to Vipi Cril Plus. The predominant fracture type was cohesive in resin. Conclusions: It was concluded that there is no difference in bond strength between artificial teeth and the resins used for denture base. However, TMC decreases the bond strength values of artificial teeth and crosslink thermo-polymerizable acrylic resin.


2012 ◽  
Vol 13 (6) ◽  
pp. 842-849
Author(s):  
T Shankar ◽  
N Venugopal Rao ◽  
Snigdha Gowd ◽  
Syed Tauqheer Ahmed ◽  
V Vinod ◽  
...  

ABSTRACT Aim The aim of this study is to evaluate the dimensional accuracy of heat polymerized acrylic resin denture base clamped by the conventional method and by new-press technique and cured by long curing cycle. Materials and methods In this study, a total of 60 standardized maxillary record bases were fabricated with seven reference points as follows: • Point A Incisive papilla, • Point B and C Canine region on either side • Point E and G Midpoint of tuberosities on either side • Point F Midpoint of the line joining the two tuberosities • Point D Midpoint between the line joining A and F Group A Ten maxillary record bases were fabricated by conventional clamping method and cured by long curing cycle. Group A’ Ten maxillary record bases were fabricated by New Press or RS tension clamping method and cured by long curing cycle. The distances between the reference points, i.e. A-B, A-C, A-D, D-F, B-E, C-G, E-F, F-G, B-D, D-G, C-D, D-E of all three thermoplastic denture base plates were measured and recorded with the help of travelling microscope and were used for comparison with the measured and recorded readings of processed acrylic denture bases. The data obtained was analyzed by using the one-way analysis of variance and HSD Multiple Comparison Test. Results The overall results of the study indicate that among all the denture bases cured by the two clamping systems and the long curing cycle, group A‘ were the most dimensionally stable, followed by control group A. Conclusion The study concluded that the denture bases fabricated by the New Press method using the long curing cycle would produce the most dimensionally stable denture bases. How to cite this article Shankar T, Gowd S, Ahmed ST, Vinod V, Goud MV, Rao NV. A Comparative Evaluation of the Dimensional Accuracy of Heat Polymerized Acrylic Resin Denture Base Clamped by the Conventional Method and by New-press Technique and Cured by Long Curing Cycle: An in vitro Study. J Contemp Dent Pract 2012;13(6):842-849.


2013 ◽  
Vol 44 ◽  
pp. 180-183 ◽  
Author(s):  
Ana Carolina Pero ◽  
Priscila Mattos Scavassin ◽  
Andressa Rosa Perin Leite ◽  
Danny Omar Mendoza Marin ◽  
André Gustavo Paleari ◽  
...  

2015 ◽  
Vol 9 (1) ◽  
pp. 402-408 ◽  
Author(s):  
A.A.R. Khaledi ◽  
M. Bahrani ◽  
S. Shirzadi

Statement of the Problem: Bonding failure between acrylic resin and soft liner material and also gradual loss of soft liner resiliency over time are two impending challenges frequently recognized with a denture base embraced with a resilient liner. Since patients drink various beverages, it is crucial to assess the influences of these beverages on physical characteristics of soft liners. Purpose: This in vitro study envisioned to assess the influence of food simulating agents (FSA) on the hardness of a silicone soft liner by employing a Shore A durometer test and also evaluate its bond strength to a denture base resin by using tensile bond strength test. Materials and Methods: To test the hardness of samples, 50 rectangular samples (40 mm × 10 mm × 3 mm) were prepared from a heat-polymerized polymethyl methacrylate (Meliodent). Mollosil, a commercially available silicone resilient liner, was provided and applied on the specimens following the manufacturer’s directions. In order to test tensile bond strength, 100 cylindrical specimens (30 mm × 10 mm) were fabricated. The liners were added between specimens with the thicknesses of 3 mm. The specimens were divided into 5 groups (n=10) and immersed in distilled water, heptane, citric acid, and 50% ethanol. For each test, we used 10 specimens as a baseline measurement; control group. All specimens were kept in dispersed containers at 37ºC for 12 days and all solutions were changed every day. The hardness was verified using a Shore A durometer and the tensile bond strength was examined by an Instron testing machine at a cross-head speed of 5 mm/min. The records were analyzed employing one-way ANOVA, Tukey’s HSD, and LSD tests. Results: The mean tensile bond strength ± standard deviation (SD) for Mollosil was as follows for each group: 3.1 ± 0.4 (water), 1.8 ± 0.4 (citric acid), 3.0 ± 0.4 (heptane), 1.2 ± 0.3 (50% ethanol), and 3.8 ± 0.4 (control). The hardness values for each group were: 28.7 ± 2.11 (water), 33.2 ± 2.82 (citric acid), 39.2 ± 4.8 (heptane), 32.3 ± 3.56 (50% ethanol) and 22.2 ± 2.08 (control). Mean values for hardness indicated that all of the food simulating agents significantly increased hardness of the Mollosil soft liner compared to the control group (p<0.05). The results of tensile bond strength depicted that water and FSA decreased the bond strength of the soft liner -denture base resin compared to the control group and it was statistically significant (p<0.05). Conclusion: The food simulating agents could influence the mechanical properties of silicone soft liners; hence, clinicians should inform their patients concerning their possible adverse effects and complications.


2020 ◽  
Vol 20 (9) ◽  
pp. 5771-5774
Author(s):  
Hyeon Kang ◽  
Min-Kyung Ji ◽  
Hoon-Sung Cho ◽  
Sang-Won Park ◽  
Kwi-Dug Yun ◽  
...  

The purpose of this study was to examine the effect of plasma treatment by treating the surface of Co–Cr alloy, Ti–6Al–4V alloy, and CP–Ti alloy as a material for denture metal frameworks with non-thermal atmospheric pressure plasma (NTAPP) and measuring their shear bond strength (SBS) with a heat-cured resin. 20 specimens were prepared for each of Co–Cr, Ti–6Al–4V, and CP–Ti alloys. Each metal alloy group was divided into the following subgroups depending on NTAPP treatment: C (Co–Cr alloy without plasma), T (CP–Ti without plasma), A (Ti–6Al–4V alloy without plasma), CP (Co–Cr alloy with plasma), TP (CP–Ti with plasma) and AP (Ti–6Al–4V alloy with plasma). Specimens were treated with a metal conditioner and bonded to a denture base resin. SBS was measured using a universal testing machine. All data obtained were statistically analyzed using two-way analysis of variance (ANOVA), Tukey’s honestly significant difference (HSD) test, and independent t-test. The mean values (SD) of SBS (MPa) were: 10.31 (1.19) for C group; 12.43 (0.98) for T group; 13.75 (2.02) for A group; 13.53 (1.61) for CP group; 16.87 (1.55) for TP group; 17.46 (1.65) for AP group. The SBS of the AP group was the highest while that of the C group was the lowest. SBS of specimen treated with NTAPP was significantly increased regardless of metal alloy types (p < 0.001). Within the limitations of this study, NTAPP can increases the SBS of Co–Cr alloy, CP–Ti alloy, and Ti–6Al–4V alloy with a denture base resin.


2006 ◽  
Vol 49 ◽  
pp. 124-129 ◽  
Author(s):  
T. Nejatian ◽  
A. Johnson ◽  
R. Van Noort

The fracture resistance of polymethyl methacrylate (PMMA) the most popular denture base materials, is not satisfactory. The aim of this study is to improve the mechanical properties of PMMA by adding filler particles. Different inorganic filler particles including micronised glass flakes, acryl silane micronised, glass flakes 350nm, TiO2 and ZrO2 with different ratios by weight were incorporated into heat-cure plain PMMA and processed with optimal condition [2.5:1 Powder/ monomer ratio, conventional packing method and water bath curing for 2 hours at 95°C] to produce 12mm diameter and 2mm thick discs. Plain PMMA without additives was prepared as a test control. Three types of mechanical tests, biaxial flexure, microindentation fracture toughness and Vickers hardness were carried out on the samples. It was found that incorporating the particles did not improve the biaxial flexural strength of the resin. However, TiO2, ZrO2 and micronised glass flakes increased the fracture toughness of the resin. The hardness of PMMA was improved by the incorporation of all the particles.


2016 ◽  
Vol 17 (4) ◽  
pp. 322-326 ◽  
Author(s):  
M Kalavathi ◽  
Mallikarjuna Ragher ◽  
G Vinayakumar ◽  
Sanketsopan Patil ◽  
Aishwarya Chatterjee ◽  
...  

ABSTRACT Objective The objective of this study was to evaluate and compare changes in the flexural strength of heat-cured denture base resins when treated using denture cleansers. Study design A total of 40 specimens with dimension 65 mm length, 10 mm width, and 3 mm thickness were prepared as per ISO 1567 specification. A total of 10 specimens were immersed in distilled water to be used as control. Of the remaining 30 samples, 10 were treated with Clinsodent, 10 with VI-Clean, and 10 with Clanden denture cleansers. Specimens in each group were subjected to three-point flexural load in universal testing machine at a cross-head speed of 5 mm/min. The peak load (N) was recorded and flexural strength was calculated. The findings were analyzed using Kruskal–Wallis analysis of variance and Mann–Whitney test. Results Heat-cured denture base resin selected for this study showed significant difference in flexural strength after immersion in denture cleansers Clinsodent, VI-Clean, and Clanden solutions, when compared with the control group. Conclusion Findings of this study showed that denture cleansers altered the flexural strength of heat polymerized acrylic resins that endured soaking cycles which simulated 180 days of use. Hence, denture cleansers should be used with caution, once a day after brushing the dentures. It is advisable for patients to follow the manufacturer's instructions. How to cite this article Ragher M, Vinayakumar G, Patil S, Chatterjee A, Mallikarjuna DM, Dandekeri S, Swetha V, Pradeep MR. Variations in Flexural Strength of Heat-polymerized Acrylic Resin after the Usage of Denture Cleansers. J Contemp Dent Pract 2016;17(4):322-326.


2020 ◽  
Vol 21 (10) ◽  
pp. 1137-1140
Author(s):  
Amit Kumar ◽  
Bhumika Kamal Badiyani ◽  
Saikat Deb ◽  
Latha Muniswamy ◽  
Gunaranjan Thota ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document