glass fiber reinforcement
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 27)

H-INDEX

13
(FIVE YEARS 3)

2022 ◽  
Vol 23 (1) ◽  
pp. 339-348
Author(s):  
Santhosh priya Karjala ◽  
Vijay Kumar Kuttynadar Rajammal ◽  
Suresh Gopi ◽  
Rajesh Ravi ◽  
Devanathan Chockalingam ◽  
...  

The main objective of this study is to compare the interpenetrating polymer networks’ (IPNs) physical strengths with different variants of fibers. In this study, E-glass, carbon, and a combination of E-glass and carbon fiber (hybrid) have been taken as the reinforcement. Similarly, three combinations of the IPNs were chosen as the matrix material, namely epoxy / polyurethane (EP), vinyl ester / polyurethane (VP) and epoxy/vinyl ester (EV) as IPN blends. In order to thoroughly understand the physical characteristics of the combination of blends and fibers, nine variants (laminates) were fabricated: combinations of epoxy / polyurethane / E-glass (EPG), epoxy / polyurethane / carbon (EPC), epoxy / vinyl ester / glass / carbon (EPGC-hybrid), vinyl ester / polyurethane / glass (VPG), vinyl ester / polyurethane / carbon (VPC), vinyl ester / polyurethane / glass / carbon (VPGC), epoxy / vinyl ester / glass (EVG), epoxy / vinyl ester / carbon (EVC), and epoxy / vinyl ester / glass / carbon (EVGC-hybrid), all with help of a hand-layup technique. Furthermore, mechanical tests such as tensile, flexural, impact, and HDT (heat distortion temperature) were performed on all the variants as per the ASTM standards. Results shows that carbon fiber reinforcement with all IPN combinations has shown extraordinary performance (double fold) over the E-glass fiber reinforcement, whereas the hybrid (combination of E-glass/carbon) laminates have shown excellent characteristics over E-glass fiber reinforcement, irrespective of IPN matrix material. All the results were compared with each other and their corresponding variations were plotted as bar charts. ABSTRAK:  Objektif utama kajian ini adalah bagi membandingkan kekuatan fizikal rangkaian polimer saling menusuk (IPN) dengan pelbagai jenis gentian berbeza. Kajian ini mengguna pakai gentian kaca-E, karbon dan gabungan kaca-E dan gentian karbon (hibrid) sebagai penguat. Begitu juga, tiga kombinasi IPN dipilih sebagai bahan matrik, iaitu epoksi / poliuretan (EP), ester vinil / poliuretan (VP) dan epoksi / ester vinil (EV) sebagai campuran IPN. Bagi tujuan memahami secara mendalam ciri-ciri fizikal gabungan campuran dan gentian, sembilan varian (lamina) dihasilkan, malaui kombinasi seperti epoksi / poliuretan / kaca-E (EPG), epoksi / poliuretan / karbon (EPC), epoksi / ester vinil / kaca / karbon (EPGC-hibrid), ester vinil / poliuretan / kaca (VPG), ester vinil / poliuretan / karbon (VPC), ester vinil / poliuretan / kaca / karbon (VPGC), epoksi / ester vinil / kaca (EVG), epoksi / ester vinil / karbon (EVC), epoksi / ester vinil / kaca / karbon (EVGC-hibrid) dengan teknik susun atur lapisan menggunakan tangan. Selain itu, ujian mekanikal seperti tegangan, lenturan, hentaman dan HDT (suhu kelenturan panas) dilakukan pada semua varian mengikut piawaian ASTM. Dapatan kajian menunjukkan bahawa, penguat gentian karbon dengan semua kombinasi IPN telah menunjukkan prestasi luar biasa (dua kali ganda) daripada penguat gentian kaca-E, manakala lamina hibrid (campuran kaca-E / karbon) telah menunjukkan ciri-ciri sangat baik berbanding penguat gentian kaca-E tanpa mengira bahan matrik IPN. Semua hasil dapatan dibandingkan antara satu sama lain dan padanan variasi diplot sebagai carta bar.


2021 ◽  
pp. 073168442110140
Author(s):  
Hossein Ramezani-Dana ◽  
Moussa Gomina ◽  
Joël Bréard ◽  
Gilles Orange

In this work, we examine the relationships between the microstructure and the mechanical properties of glass fiber–reinforced polyamide 6,6 composite materials ( V f = 54%). These materials made by thermocompression incorporate different grades of high fluidity polyamide-based polymers and two types of quasi-UD glass fiber reinforcement. One is a classic commercial fabric, while the other specially designed and manufactured incorporates weaker tex glass yarns (the spacer) to increase the planar permeability of the preform. The effects of the viscosity of the polymers and their composition on the wettability of the reinforcements were analyzed by scanning electron microscopy observations of the microstructure. The respective influences of the polymers and the spacer on the mechanical performance were determined by uniaxial tensile and compression tests in the directions parallel and transverse to the warp yarns. Not only does the spacer enhance permeability but it also improves physical and mechanical properties: tensile longitudinal Young’s modulus increased from 38.2 GPa to 42.9 GPa (13% growth), tensile strength increased from 618.9 MPa to 697 MPa (3% growth), and decrease in ultimate strain from 1.8% to 1.7% (5% reduction). The correlation of these results with the damage observed post mortem confirms those acquired from analyses of the microstructure of composites and the rheological behaviors of polymers.


2021 ◽  
Vol 1145 (1) ◽  
pp. 012096
Author(s):  
K S Raghul ◽  
K Giridharan ◽  
R Gobikrishnan ◽  
Vra Gowthamaa ◽  
V S Jeffrin Jill

2020 ◽  
Vol 10 (11) ◽  
pp. 1900-1910
Author(s):  
Masturi ◽  
Dante Alighiri ◽  
Riful Mazid Maulana ◽  
Susilawati ◽  
Apriliana Drastisianti ◽  
...  

In this work, the effect of polyurethane binder and glass fiber as reinforcement on the physical and mechanical properties of mahogany (Swietenia mahagoni) leaves waste as biocomposite was investigated. Mahogany leaves waste has been successfully synthesized into a strong and lightweight biocomposite material by using a polyurethane binder and glass fiber as reinforcement. The mass content of polyurethane was varied between 0.25?1.50 g to obtain the optimum conditions. The contents of glass fiber added were between 0.1?0.5 g for biocomposite reinforcement. The addition of polyurethane and glass fiber mass fraction on biocomposite from mahogany leaves waste affected the physical and mechanical properties. The optimum ratio of mahogany leaves waste and polyurethane binder to produce biocomposite showed a compressive strength of 41.59 MPa, a density of 1.060 g/cm3, water absorption of 6.98%, and a thickness development of 7.27%. The addition of glass fiber material was proven to increase the compressive strength of biocomposites to 57.68 MPa. The addition of glass fiber to biocomposites also succeeded in improving physical properties. The testing of glass fiber reinforced biocomposites resulted in a density of 1.140 g/cm3, water absorption of 5.42%, and thickness development of 8.18%.


2020 ◽  
Vol 544 ◽  
pp. 120173
Author(s):  
Tao Bai ◽  
Bowen Liu ◽  
Yanguang Wu ◽  
Wei Huang ◽  
Hao Wang ◽  
...  

2020 ◽  
Vol 309 ◽  
pp. 140-145
Author(s):  
Ivan Hollý

The reinforcing steel embedded in concrete is generally protected against corrosion by the high alkalinity (pH = 12.5 to 13.5) of the concrete pore solution. The structural degradation of concrete structures due to reinforcement’s corrosion has an impact on the safety, serviceability and durability of the structure. The corrosion of reinforcements in the construction of a transport infrastructure (especially bridges), parking areas, etc., is primarily initiated by chlorides from de-icing salts. Glass fiber reinforcement polymer (GFRP) bars are suitable alternatives to steel bars in reinforced concrete applications. The bond between concrete and reinforcement is one of the basic requirements for the composite action of both materials. The transfer of forces between the steel reinforcement and the concrete is provided by the following mechanisms: adhesion, friction and mechanical interlocking. The bond between GFRP reinforcement and concrete is different and it is ensured by friction and mechanical interlocking of the rebar surface. The chemical bond does not originate between GFRP reinforcement and the surrounding concrete, so adhesion does not contribute to transfer of the bond forces. Some few test methods are used to determine the bond between GFRP reinforcement and concrete. The pull-out tests were used to determine the bond behavior between GFRP rebars and concrete. This paper describes the preparation, process, results and evaluation of the pull-out tests.


Sign in / Sign up

Export Citation Format

Share Document