scholarly journals Modification of static bending strength properties of Eucalyptus grandis heat-treated wood

2012 ◽  
Vol 15 (6) ◽  
pp. 922-927 ◽  
Author(s):  
Pedro Henrique Gonzalez de Cademartori ◽  
Eduardo Schneid ◽  
Darci Alberto Gatto ◽  
Rafael Beltrame ◽  
Diego Martins Stangerlin
2000 ◽  
Vol 46 (1) ◽  
pp. 8-15 ◽  
Author(s):  
Yoshitaka Kubojima ◽  
Takeshi Okano ◽  
Masamitsu Ohta

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6218
Author(s):  
Luďka Hlásková ◽  
Jiří Procházka ◽  
Vít Novák ◽  
Petr Čermák ◽  
Zdeněk Kopecký

This work examines the effect of thermal modification temperatures in the production of thermally modified wood on the cutting and fracture parameters when cutting heat-treated spruce wood by a circular sawblade machine. The samples were thermally modified at 160, 180, 200, and 220 °C. One sample was unmodified and was used as a reference sample. On the basis of the performed experiments, the fracture parameters (fracture toughness and shear yield strength) were calculated for the axial–perpendicular direction of cutting. In comparison with the theoretical assumptions, the influence of temperature on the cutting and fracture parameters was confirmed. Thermally treated wood is characterized by increased fragility and susceptibility to crack formation, as well as reduced density, bending strength, and shear strength. These properties significantly affect the size of the cutting force and feed force, as well as the fracture parameters. As the temperature increases, the values of these parameters decrease. The mentioned material characteristics could be useful for the optimization of the cutting process, as well as for the issue of energy consumption during the machining of heat-treated wood.


BioResources ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 9531-9543
Author(s):  
Ekrem Durmaz ◽  
Tutku Ucuncu ◽  
Mehmet Karamanoglu ◽  
Alperen Kaymakci

Heat treatment of wood materials is generally performed to improve the physical, mechanical, chemical, surface, thermal, and crystallinity characteristics. In this way, the usage areas of wood material in different purposes can be expanded by means of heat treatment. The goal of this study was to determine the physical, mechanical, chemical, crystallinity, and surface properties of heat-treated Scots pine (Pinus sylvestris L.) wood. The test samples were heat-treated at 120 °C, 150 °C, 180 °C, and 210 °C for 4 and 6 h in a laboratory-scale oven. The shrinking and swelling chracteristics of wood was decreased as a function of heat treatment processes. Bending strength, compression strength, and modulus of elasticity decreased. In addition, lignin ratios and crystallinity index increased as temperature and duration of the treatment were increased. Consequently, heat-treated wood materials can be used in various areas by developing some of their properties.


2008 ◽  
Vol 43 (1-2) ◽  
pp. 97-103 ◽  
Author(s):  
L. Awoyemi ◽  
M. C. Jarvis ◽  
A. Hapca

2017 ◽  
Vol 45 (113) ◽  
Author(s):  
Antonio Jose Vinha Zanuncio ◽  
Amélia Guimarães Carvalho ◽  
Liniker Fernandes da Silva ◽  
Marcela Gomes da Silva ◽  
Angelica de Cassia Oliveira Carneiro ◽  
...  

Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Hüseyin Pelit ◽  
Fatih Emiroglu

AbstractIn this study, the effect of thermo-mechanical densification on the density, hardness, compression strength, bending strength (MOR), and modulus of elasticity (MOE) of fir and aspen wood pretreated with water repellents was analyzed. Wood specimens were impregnated with paraffin, linseed oil and styrene after pre-vacuum treatment. Then, the impregnated wood specimens were densified with compression ratios of 20 and 40%, and at 120, 150 and 180 °C. The results indicated that the density, hardness and strength properties of the all densified specimens (untreated and impregnated) increased depending on the compression ratio and temperature. For all tested properties, higher increases were obtained in the paraffin and styrene pretreated specimens compared to untreated samples. However, the increase rates in linseed oil pretreated specimens were generally lower than untreated specimens. Regarding water repellents the most successful results in all tested properties were determined in styrene pretreated specimens. The density, hardness and strength properties of all specimens increased with the increase in compression ratio. On the other hand, the increase in the compression temperature negatively affects the properties of untreated and linseed oil pretreated specimens, while having a generally positive effect on the properties of paraffin pretreated specimens. However, all tested properties of styrene pretreated specimens have increased significantly due to the increase in compression temperature. The increasing strength properties of wood as a result of densification have increased much more with paraffin and especially styrene pretreatment. These combinations can be considered as an important potential for applications that require more hardness and strength.


Author(s):  
Tianyi Zhan ◽  
Zhiting Liu ◽  
Hui Peng ◽  
Jiali Jiang ◽  
Yaoli Zhang ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 968
Author(s):  
Dong Xing ◽  
Xinzhou Wang ◽  
Siqun Wang

In this paper, Berkovich depth-sensing indentation has been used to study the effects of the temperature-dependent quasi-static mechanical properties and creep deformation of heat-treated wood at temperatures from 20 °C to 180 °C. The characteristics of the load–depth curve, creep strain rate, creep compliance, and creep stress exponent of heat-treated wood are evaluated. The results showed that high temperature heat treatment improved the hardness of wood cell walls and reduced the creep rate of wood cell walls. This is mainly due to the improvement of the crystallinity of the cellulose, and the recondensation and crosslinking reaction of the lignocellulose structure. The Burgers model is well fitted to study the creep behavior of heat-treated wood cell walls under different temperatures.


Sign in / Sign up

Export Citation Format

Share Document