Modeling bending strength of oil-heat-treated wood by near-infrared spectroscopy

2020 ◽  
Vol 17 (1) ◽  
pp. 54-65
Author(s):  
Thierry Koumbi-Mounanga ◽  
Brigitte Leblon ◽  
Tony Ung
2020 ◽  
Vol 28 (4) ◽  
pp. 214-223
Author(s):  
Junqian Mo ◽  
Wenbo Zhang ◽  
Xiaohui Fu ◽  
Wei Lu

This study investigated the feasibility of using near infrared spectroscopy technology to predict color and chemical composition in the heat-treated bamboo processing industry. The quantitative presentations of the changes in the chemical components were discussed using the difference spectra method of the 2nd derivative NIR spectra of the heat-treated bamboo samples. Then, the relationships between the color changes of the heat-treated bamboo and its near infrared spectra were constructed using the changes in the chemical components of the bamboo samples during the heating process. The prediction of color and chemical composition of both the outer and inner sides of the heat-treated bamboo surface were constructed using partial least squares regression method combined with a leave-one-out cross-validation process. Then, the results were validated by independent sample sets. The proposed prediction models were found to produce high r2P (above 0.93), RPD (above 3.13), and low RMSEP for both the outer and inner sides of the heat-treated bamboo samples. These studies’ results confirmed that the proposed models, especially outer side models, were perfectly suitable for the in-process inspections of the color and chemical content changes of heat-treated bamboo.


2019 ◽  
Vol 50 (4) ◽  
pp. 191-197 ◽  
Author(s):  
Manuela Mancini ◽  
Elena Leoni ◽  
Michela Nocetti ◽  
Carlo Urbinati ◽  
Daniele Duca ◽  
...  

Near infrared spectroscopy (NIR) is a technique widely used for the prediction of different chemical-physical features of wood. In this study, the technique was used to assess its potential to predict the mechanical characteristics of wood. Castanea sativa samples of three different European provenances were collected and laboratory tests were performed to assess the mechanical properties of wood samples. Modulus of elasticity (MOE), load-deflection curve and modulus of rupture (MOR) were calculated by using INSTRON machine with three points bending strength with elastic modulus, while density (D) was calculated according to the current standard. Samples were then analysed by means of NIR spectroscopy. The raw spectra were pre-processed and regression models were developed. Variables selection techniques were used to improve the model performance. In detail, MOE regression model returned an error of 696.01 MPa (R2=0.78). Instead, MOR and D prediction models must be further investigated on a wider number of samples considering the high variability in physical characteristics of chestnut wood. The results demonstrated the possibility to use NIR technique for the prediction of the mechanical properties of wood providing useful indications in evaluation-screening processes. Indeed, the presence of the principal wood compounds (cellulose, hemicellulose and lignin) and their influence in the characterisation of mechanical stress reactions were confirmed.


2016 ◽  
Vol 24 (4) ◽  
pp. 373-380 ◽  
Author(s):  
Éva Szabó ◽  
László Párta ◽  
Dénes Zalai ◽  
Szilveszter Gergely ◽  
András Salgó

1998 ◽  
Vol 6 (A) ◽  
pp. A171-A173 ◽  
Author(s):  
Roger Feldhoff ◽  
Thomas Huth-Fehre ◽  
Karl Cammann

The recycling of waste wood causes great problems due to the variety of toxic wood preservatives, varnishes and paints used. The fast and reliable distinction and sorting of treated and untreated wood on demolition sites could open new ways of wood recycling, e. g. for the production of chip boards. For this purpose, prepared wood samples treated with inorganic wood preservatives (arsenic, boron, copper salts) were investigated by near infrared-spectroscopy. In most cases, treated wood samples could be distinguished from untreated ones. Furthermore the type of wood preservative could be identified. The observed spectral features are electronic absorption bands and changes in the OH–band due to interaction with salt molecules.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Kerstin Wagner ◽  
Thomas Schnabel ◽  
Marius-Catalin Barbu ◽  
Alexander Petutschnigg

This paper deals with the characterization of the properties of wood fibres leather shavings composite board by using the near infrared spectroscopy (NIRS) and multivariate data analysis. In this study fibreboards were manufactured with different leather amounts by using spruce fibres, as well as vegetable and mineral tanned leather shavings (wet white and wet blue). The NIR spectroscopy was used to analyse the raw materials as well as the wood leather fibreboards. Moreover, the physical and mechanical features of the wood leather composite fibreboards were determined to characterize their properties for the further data analysis. The NIR spectra were analysed by univariate and multivariate methods using the Principal Component Analysis (PCA) and the Partial Least Squares Regression (PLSR) method. These results demonstrate the potential of FT-NIR spectroscopy to estimate the physical and mechanical properties (e.g., bending strength). This phenomenon provides a possibility for quality assurance systems by using the NIRS.


2007 ◽  
Vol 19 (4) ◽  
pp. 279-285 ◽  
Author(s):  
Stephen E. Hedrick ◽  
Richard M. Bennett ◽  
Timothy G. Rials ◽  
Stephen S. Kelley

Sign in / Sign up

Export Citation Format

Share Document