scholarly journals Comparative analysis of genetic diversity among the maize inbred lines (Zea mays L.) obtained by RAPD and SSR markers

2008 ◽  
Vol 51 (1) ◽  
pp. 183-192 ◽  
Author(s):  
Silvia Graciele Hülse de Souza ◽  
Valéria Carpentieri-Pípolo ◽  
Claudete de Fátima Ruas ◽  
Valdemar de Paula Carvalho ◽  
Paulo Maurício Ruas ◽  
...  

The RAPD and SSR markers were used to compare the genetic diversity among the 16 maize inbred lines. Twenty-two primers were used in the RAPD reactions, resulting in the amplification of 265 fragments, while 16 pairs of SSR primers resulted in 75 fragments. The similarity based on Dice coefficient for the RAPD ranged from 53 to 84% and for the SSR from 11 to 82%. The dendrogram obtained by the RAPD showed five groups, while dendrogram obtained by the SSR showed three groups and one isolated line. The association constructed from the markers and the principal coordinate’s analysis separated lines into two groups according to endosperm color, either orange or yellow. The RAPD were effective to validate pedigree data, while the SSR were effective to recognize the differences between the quantitative characters. Because they assess the distinct regions of the genome, the selection of one or other marker would depend on the characteristics of the material used and the objectives of the project.

Genetika ◽  
2015 ◽  
Vol 47 (2) ◽  
pp. 489-498
Author(s):  
Ana Nikolic ◽  
Dragana Ignjatovic-Micic ◽  
Dragan Kovacevic ◽  
Zoran Camdzija ◽  
Milomir Filipovic ◽  
...  

Creating new maize hybrids with greater yield potential is a permanent goal of breeding programs all over the world. Long-time existing and new problems related to different biotic and abiotic stresses and the growing needs of the world market require constant work on finding new ways for advancing maize production. Molecular marker technology is one of the fastest developing fields and its implementation has already given results in solving different problems related to maize breeding improvement. The aim of the study presented herein was characterization and genetic similarity assessment of twenty-nine maize inbred lines from Maize Research Institute collection using Simple Sequence Repeats (SSR) markers. The analysis was done using 20 pairs of SSR primers with clearly visible and reproducible results. A total of 119 alleles were detected with a mean of 5.8 per locus. PIC (Polymorphism Information Content) values were in the range from 0.45 to 0.92 (average 0.74). Genetic similarities calculated using Jaccard?s coefficient ranged from 0.27 to 0.99. Cluster and Principal Component Analysis (PCA) analysis were done using matrices of similarity in the NTSYSpc software, version 2.1. Results of both classifications were moderately in agreement with the pedigree data of analysed genotypes. The information about genetic diversity of maize inbred lines revealed by SSR markers could be useful in planning strategies for future maize breeding programs.


Crop Science ◽  
2004 ◽  
Vol 44 (6) ◽  
pp. 2230-2237 ◽  
Author(s):  
X. C. Xia ◽  
J. C. Reif ◽  
D. A. Hoisington ◽  
A. E. Melchinger ◽  
M. Frisch ◽  
...  

2010 ◽  
Vol 32 (4) ◽  
pp. 375-384 ◽  
Author(s):  
Kyu Jin Sa ◽  
Jong Yeol Park ◽  
Ki Jin Park ◽  
Ju Kyong Lee

Author(s):  
Maizura Abu Sin ◽  
Ghizan Saleh ◽  
Nur Ashikin Psyquay Abdullah ◽  
Pedram Kashiani

Genetic diversity and phenotypic superiority are important attributes of parental inbred lines for use in hybrid breeding programs. In this study, genetic diversity among 30 maize (Zea mays L.) inbred lines comprising of 28 introductions from the International Maize and Wheat Improvement Center (CIMMYT), one from Indonesia and a locally developed, were evaluated using 100 simple sequence repeat (SSR) markers, as early screening for potential parents of hybrid varieties. All markers were polymorphic, with a total of 550 unique alleles detected on the 100 loci from the 30 inbred lines. Allelic richness ranged from 2 to 13 per locus, with an average of 5.50 alleles (na). Number of effective alleles (ne) was 3.75 per locus, indicating their high effectiveness in revealing diversity among inbred lines. Average polymorphic information content (PIC) was 0.624, with values ranging from 0.178 to 0.874, indicating high informativeness of the markers. High gene diversity was observed on Chromosomes 8 and 4, with high number of effective alleles, indicating their potential usefulness for QTL analysis. The UPGMA dendrogram constructed identified four heterotic groups within a similarity index of 0.350, indicating that these markers were able to group the inbred lines. The three-dimensional PCoA plot also supports the dendrogram grouping, indicating that these two methods complement each other. Inbred lines in different heterotic groups have originated from different backgrounds and population sources. Information on genetic diversity among the maize inbred lines are useful in developing strategies exploiting heterosis in breeding programs


2015 ◽  
Vol 26 (2) ◽  
pp. 09-14 ◽  
Author(s):  
M. G. Azam Azam ◽  
U. K. Sarker Sarker ◽  
M. A. K. Mian Mian ◽  
B. R. Banik Banik ◽  
M. Z. A. Talukder

Forty nine CIMMYT, India Maize inbred lines were characterized based on some morphological traits and grain yield. Genetic divergences of inbred lines of maize were estimated using D2 and principal component analysis. The genotypes under study fell into five clusters. The inter cluster distance were higher than intra cluster distance suggesting wider genetic diversity among the genotypes of different groups. The maximum intra cluster value was observed in cluster IV and minimum in cluster V. The inter cluster D2 values revealed that the maximum distance among the cluster. The highest inter cluster distance was observed between cluster II & I and the lowest inter cluster distance was illustrated in cluster III & I. The cluster means were higher for days to 50% tasseling, days to 50% sillking, plant height, ear height, cob length, number of rows per cob, number of grains per row in cluster IV; cob diameter and grain yield per plant was found higher in cluster II. It is expected that crossing of inbred lines belonging high to medium D2 values tend to produce high heterosis for yield.


2019 ◽  
pp. 1113-1119
Author(s):  
Keitumetse Kujane ◽  
Moosa M Sedibe ◽  
Alina Mofokeng

In this study, we aimed to investigate the genetic diversity and polymorphism among 30 soybean genotypes maintained by the ARC using simple sequence repeat (SSR) markers. Soybean genotypes were characterized using 20 SSR primers. DNA was extracted using the standard cetyl trimethylammonium bromide method and amplified using PCR. Allele size was determined via comparison with a 100 base pair (bp) DNA ladder. Molecular data were analyzed, and a dendrogram and matrix were generated using GGT 2.0 software. A total of 216 alleles with an average of 10.8 alleles per locus were detected. The allele sizes ranged between 2 and 33 bp with an average of 18.7 bp. The polymorphic information content among genotypes varied from 0.85 (Satt001) to 0.75 (Satt43) with an average of 0.716, and heterozygosity ranged from 0.87 to 0.78 with an average of 0.7485. The most diverse genotypes were B 66 S 31, 69S 7, and R5-4-2 M, which indicated the efficiency of the SSR markers for the detection of genetic diversity. The results of the current study revealed the diversity among the soybean genotypes tested, which might aid breeders in the future in the selection of parents for breeding.


Genetika ◽  
2007 ◽  
Vol 39 (3) ◽  
pp. 355-363 ◽  
Author(s):  
Jelena Srdic ◽  
Snezana Mladenovic-Drinic ◽  
Zorica Pajic ◽  
Milomir Filipovic

Information about the genetic diversity of inbred lines is essential in planning maize breeding programmes. Utilization of diverse parents in the process of hybridization has the greatest influence on producing high yielding hybrids. The aim of this research was to determine genetic diversity of ten maize inbred lines of different origin on the basis of protein and RAPD markers and to compare these results with pedigree and grain yield heterosis data. Results of genetic distances, based on protein and RAPD markers were similar and in concurrence with the date on the origin of inbreds. Usefulness of protein and RAPD markers for assigning inbreds to heterotic groups was examined by the cluster analysis. Cluster analysis based on protein markers, RAPD and heterosis showed clear grouping of lines into two main heterotic groups. Only few deviations were noticed, and those among inbreds not belonging to those heterotic groups. According to the observed results it could be concluded that grouping of inbred lines based on molecular markers, generally agrees with their pedigrees and that clusters are representatives of heterotic groups. Very high and highly significant estimate of rank correlation coefficient between RAPD and heterosis (0,876**) also confirmed that.


Genetika ◽  
2015 ◽  
Vol 47 (1) ◽  
pp. 233-243
Author(s):  
Ivica Buhinicek ◽  
Mirko Jukic ◽  
Hrvoje Sarcevic ◽  
Jerko Gunjaca ◽  
Zdravko Kozic ◽  
...  

In this paper, changes of genetic diversity of the most important maize inbred lines used for hybrid production within the Bc Institute in the 1970s, 1980s, 1990s and 2000s were examined using the SSR markers. The average number of alleles per SSR locus was 3.14, 3.43, 3.07 and 3.25 for lines from 1970s, 1980s, 1990s and 2000s, whereas the number of private alleles for the same four decades was 8, 4, 0 and 6, respectively. Mean genetic distance among inbreds within decades steadily decreased over time from 0.64 in 1970s to 0.57 in 2000s, but the observed differences were not statistically significant. The clustering of the studied inbred lines indicates the exploitation of a known BSSS x LSC heterotic pattern within the Bc Institute maize breeding program. The overall results show that recycled inbred lines within these pools do not decline in genetic variation over the past 40 years.


Sign in / Sign up

Export Citation Format

Share Document