scholarly journals Dark clouds and their silver linings: exotic generalist predators in augmentative biological control

2002 ◽  
Vol 31 (2) ◽  
pp. 169-176 ◽  
Author(s):  
PATRICK DE CLERCQ
Author(s):  
Eizi Yano

Abstract In Japan, augmentative biological control is mainly implemented in greenhouses using arthropod natural enemies. Two imported natural enemy species, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) against spider mites and Encarsia formosa Gahan (Hymenoptera: Aphelinidae) against the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae), were first commercialised in greenhouses in 1995, followed by the commercialisation of other exotic species. Exotic arthropod natural enemies are used to control both exotic and indigenous pests in greenhouses. Currently, the most popular exotic natural enemy species are predatory mites such as P. persimilis and Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Recently, there has been a shift from using exotic to using indigenous natural enemies in greenhouses. Currently, the importation of generalist predators for augmentative biological control is very difficult in Japan. Several collaborative studies have been conducted in Japan to develop biological control using indigenous natural enemies. These studies developed innovative technologies, such as new banker plant systems based on combinations of two natural enemies or flightless Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Indigenous natural enemies have been commercialised following the registration of Orius strigicollis (Poppius) (Hemiptera: Anthocoridae). Biological control can be achieved using an indigenous strain of Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) with a banker plant system, on which the bug can reproduce without alternative prey. Research and development of biological control using indigenous natural enemies should be continued in Japan.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 583
Author(s):  
Carl C. Christensen ◽  
Robert H. Cowie ◽  
Norine W. Yeung ◽  
Kenneth A. Hayes

Classic biological control of pest non-marine mollusks has a long history of disastrous outcomes, and despite claims to the contrary, few advances have been made to ensure that contemporary biocontrol efforts targeting mollusks are safe and effective. For more than half a century, malacologists have warned of the dangers in applying practices developed in the field of insect biological control, where biocontrol agents are often highly host-specific, to the use of generalist predators and parasites against non-marine mollusk pests. Unfortunately, many of the lessons that should have been learned from these failed biocontrol programs have not been rigorously applied to contemporary efforts. Here, we briefly review the failures of past non-marine mollusk biocontrol efforts in the Pacific islands and their adverse environmental impacts that continue to reverberate across ecosystems. We highlight the fact that none of these past programs has ever been demonstrated to be effective against targeted species, and at least two (the snails Euglandina spp. and the flatworm Platydemus manokwari) are implicated in the extinction of hundreds of snail species endemic to Pacific islands. We also highlight other recent efforts, including the proposed use of sarcophagid flies and nematodes in the genus Phasmarhabditis, that clearly illustrate the false claims that past bad practices are not being repeated. We are not making the claim that biocontrol programs can never be safe and effective. Instead, we hope that in highlighting the need for robust controls, clear and measurable definitions of success, and a broader understanding of ecosystem level interactions within a rigorous scientific framework are all necessary before claims of success can be made by biocontrol advocates. Without such amendments to contemporary biocontrol programs, it will be impossible to avoid repeating the failures of non-marine mollusk biocontrol programs to date.


2017 ◽  
Vol 149 (4) ◽  
pp. 525-533 ◽  
Author(s):  
Tatyana A. Rand

AbstractAlfalfa weevil (Coleoptera:Curculionidae) is a major pest of alfalfa throughout the United States of America. Biological control research has disproportionately focussed on introduced parasitoids. Generalist predators may also be important, but experimental work evaluating their impacts is lacking. I combined a cross-site survey with a predator exclusion experiment to identify key predators, and test for impacts on weevil survival and plant defoliation levels in Montana and North Dakota, United States of America. Spiders (Araneae) dominated the complex, followed by Nabidae (Hemiptera) and Coccinellidae (Coleoptera). None of the dominant predators showed aggregative responses to weevil (Hypera postica (Gyllenhal); Coleoptera: Curculionidae) or pea aphid (Acyrthosiphon pisum (Harris); Hemiptera: Aphididae) densities across 10 sites surveyed. However, weevil densities were positively correlated with both coccinellid and nabid densities across transects at the experimental site. Thus, predator groups traditionally associated with aphids can show strong aggregative numerical responses to alfalfa weevil larvae at smaller scales. Predator exclusion revealed no significant predator effects on larval survival or alfalfa damage. However, final densities of pea aphids were significantly higher in exclusion treatments relative to controls. The results suggest that even under conditions where predators exert significant pressure on aphids, they may still have minimal impacts on weevils. Additional experimental work is necessary to determine the broader potential of generalist predators as alfalfa weevil control agents.


2018 ◽  
Vol 150 (2) ◽  
pp. 265-273
Author(s):  
J. van Zoeren ◽  
C. Guédot ◽  
S.A. Steffan

AbstractBiological control plays an important role in many integrated pest management programmes, but can be disrupted by other control strategies, including chemical and cultural controls. In commercial cranberry (Vaccinium macrocarpon Aiton; Ericaceae) production, a spring flood can replace an insecticide application, providing an opportunity to study the compatibility of the flood (a cultural control) with biological control. We suspect that chemical controls will tend to reduce the number of natural enemies, while the flood, through removal of detritus and detritivores, may cause generalist predators to prey-switch to consume proportionally more pest individuals. We measured the abundance of herbivores (Lepidoptera), detritivores, Arachnida, and parasitoids (Hymenoptera) every week for six weeks in Wisconsin (United States of America) cranberry beds following either an insecticide spray or a cultural control flood. We found that detritivore populations rapidly declined in both flood and spray treatments; conversely, carnivore populations (spiders and parasitoids) were more abundant in the flooded beds than in sprayed beds. Populations of key cranberry pests were similar between flooded and sprayed beds. Our results showed that early-season flooding preserved more natural enemies than an insecticide application. This increase in natural enemy abundance after the flood may allow for greater continuity in herbivore suppression, potentially providing a basis for long-term cranberry pest management.


Author(s):  
John A. Goolsby ◽  
Matthew A. Ciomperlik ◽  
Gregory S. Simmons ◽  
Charles J. Pickett ◽  
Juli A. Gould ◽  
...  

2017 ◽  
Vol 73 (8) ◽  
pp. 1743-1752 ◽  
Author(s):  
Majesh Tomson ◽  
Kitherian Sahayaraj ◽  
Vivek Kumar ◽  
Pasco B Avery ◽  
Cindy L McKenzie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document