scholarly journals Conserving carnivorous arthropods: an example from early-season cranberry (Ericaceae) flooding

2018 ◽  
Vol 150 (2) ◽  
pp. 265-273
Author(s):  
J. van Zoeren ◽  
C. Guédot ◽  
S.A. Steffan

AbstractBiological control plays an important role in many integrated pest management programmes, but can be disrupted by other control strategies, including chemical and cultural controls. In commercial cranberry (Vaccinium macrocarpon Aiton; Ericaceae) production, a spring flood can replace an insecticide application, providing an opportunity to study the compatibility of the flood (a cultural control) with biological control. We suspect that chemical controls will tend to reduce the number of natural enemies, while the flood, through removal of detritus and detritivores, may cause generalist predators to prey-switch to consume proportionally more pest individuals. We measured the abundance of herbivores (Lepidoptera), detritivores, Arachnida, and parasitoids (Hymenoptera) every week for six weeks in Wisconsin (United States of America) cranberry beds following either an insecticide spray or a cultural control flood. We found that detritivore populations rapidly declined in both flood and spray treatments; conversely, carnivore populations (spiders and parasitoids) were more abundant in the flooded beds than in sprayed beds. Populations of key cranberry pests were similar between flooded and sprayed beds. Our results showed that early-season flooding preserved more natural enemies than an insecticide application. This increase in natural enemy abundance after the flood may allow for greater continuity in herbivore suppression, potentially providing a basis for long-term cranberry pest management.

2017 ◽  
Vol 47 (6) ◽  
Author(s):  
Adeney de Freitas Bueno ◽  
Geraldo Andrade Carvalho ◽  
Antônio Cesar dos Santos ◽  
Daniel Ricardo Sosa-Gómez ◽  
Débora Mello da Silva

ABSTRACT: Pesticides are considered the first line of defense for the control of pests and diseases. At least in the short and medium term, the use of pesticides will remain an important strategy for pest management, allowing growers to produce crops of sufficient quality at low costs. A broad approach known as Integrated Pest Management (IPM) combines several different pest-control strategies, among which the combination of chemical and biological control stands out. It requires pesticides that achieve optimal control of target pests with minimal impact on the activity of biological control agents. Because of the dynamics of pest infestations, IPM routines are continuously adjusted by growers, requiring comprehensive information about pesticide effects on natural enemies. However, this information is not always available and often contradictory, which constrains the design of field recommendations. In this review, we focused on the importance of selective pesticides in IPM programs, and the effects of chemical pesticides on parasitoids, predators, and entomopathogenic fungi. We provided a detailed discussion of the challenges and constraints for research on pesticide effects on natural enemies, as well as for the resulting field recommendations.


2021 ◽  
Vol 51 (9) ◽  
Author(s):  
Adelia Maria Bischoff ◽  
Jason Lee Furuie ◽  
Alessandra Benatto ◽  
Rubens Candido Zimmermann ◽  
Emily Silva Araujo ◽  
...  

ABSTRACT: Increased production of the Cape gooseberry (Physalis peruviana L.) in Brazil has given rise to interest in identifying the phytophagous species that might damage this crop to inform preventive control and integrated pest management strategies. In this study, we report the occurrence and describe the damage that larvae and adults of Lema bilineata Germar (Coleoptera: Chrysomelidae) cause in P. peruviana. The number of L. bilineata individuals, both larvae and adults, significantly affected the total consumption of P. peruviana leaves. We also report, for the first time, three natural enemies, including a fungus, a fly, and an ant, which are associated with this pest in Brazil and may play a role in biological control strategies.


Author(s):  
A. A. Oso ◽  
G. O. Awe

Aim: Information on the influence of water availability during different seasons of rainfed or irrigated agriculture as it relates to insect pest population build-up in crops could assist in the development of integrated pest management. A study was therefore conducted to investigate effects of spacing, pest infestation and control on cucumber under rainfed and irrigated conditions. Place and Duration of Study: At the Teaching and Research Farm, Ekiti State University, Ado Ekiti, Nigeria during the 2016/2017 rainy and dry seasons. Methodology: The experiment was laid out using randomized complete block design (RCBD) in a split-plot arrangement in five replications, with spacing (60 x 60 cm, 60 x 90 cm and 60 x 120 cm) as the main plot treatments and the sub-plot treatments were different pest control strategies. The pest control strategies include synthetic insecticide (Lambda-cyhalothrin), botanical insecticide (Anogeissus leiocarpus) and control. Growth parameters and yield attributes were recorded. Insect pest occurrence, their build-up and percentage infestation on cucumber and the efficacy of the management strategies were monitored. Results: The results showed that yield was enhanced in irrigated system with the widest spacing of 60 x 120 cm botanical treatment interaction. Bemisia tabaci was the most prominent insect pest attacking cucumber under irrigated system. Conclusion: Other cultural control practices such as the use of trap crops with little or no financial implication should also be added to botanical pesticides as an integrated pest management tactic for effective management and control of the pest.


2018 ◽  
Vol 26 (01) ◽  
pp. 59-86 ◽  
Author(s):  
BAOLIN KANG ◽  
BING LIU ◽  
FENGMEI TAO

Considering the delayed response to pesticide applications and the long-term residual effects of pesticides after the deployment of a pest management strategy, this paper develops a pollutant-discharge model to simulate pesticide spraying and analyze the effect of releasing natural enemies of the pest. The following two different control strategies are discussed: (1) the frequency of spraying pesticides is higher than that of releasing natural enemies, and (2) the frequency of releasing natural enemies is higher than that of spraying pesticides. For different control strategies, the sufficient conditions of locally asymptotic stability and globally asymptotic stability of the pest-eradication periodic solution are obtained. Using numerical simulations, we analyze the sensitivity of the threshold condition with respect to the parameters, identify the major factors affecting pest control and provide guidance for decision-making in pest management. Finally, we compare the control strategies and analyze which strategy is optimal as the most significant control parameters are varying.


Author(s):  
Xing-eng Wang

Abstract Drosophila suzukii (Matsumura) is native to East Asia but has widely established in the Americas and Europe, where it is a devastating pest of soft-skinned fruits. It has a wide host range and these non-crop habitats harbor the fly which then repeatedly reinvades crop fields. Biological control in non-crop habitats could be the cornerstone for sustainable management at the landscape level. Toward this goal, researchers have developed or investigated biological control tactics. We review over 100 studies, conducted in the Americas, Asia and Europe on natural enemies of D. suzukii. Two previous reviews provided an overview of potential natural enemies and detailed accounts on foreign explorations. Here, we provide an up-to-date list of known or evaluated parasitoids, predators and entomopathogens (pathogenic fungi, bacteria, nematodes, and viruses) and summarize research progress to date. We emphasize a systematic approach toward the development of biological control strategies that can stand alone or be combined with more conventional control tools. Finally, we propose a framework for the integrated use of biological control tools, from classical biological control with host-specific Asian parasitoids, to augmentative and conservation biological control with indigenous natural enemies, to the use of entomopathogens. This review provides a roadmap to foster the use of biological control tools in more sustainable D. suzukii control programs.


2019 ◽  
pp. 139-148 ◽  
Author(s):  
Sarah Mansfield ◽  
Colin M. Ferguson ◽  
Toni White ◽  
Scott Hardwick ◽  
Sean D.G. Marshall ◽  
...  

New Zealand’s pastoral sector faces significant challenges to pest management as long-standing insecticides are deregistered. To protect their pastures, farmers need to shift from reactive responses that lead to poor economic outcomes to pre-emptive responses that are viable in the long term. Current management practices (insecticides, endophytes, biological control) for New Zealand’s pasture insect pests were assessed from the perspective of Integrated Pest Management (IPM). Potential impacts from novel control strategies and emerging digital technologies were evaluated to determine how these could improve pest management. Cryptic IPM is present within the New Zealand pastoral sector: that is, farmers practise various elements of IPM but these elements are not integrated into a cohesive system, so farmers often fail to recognise pest impacts until significant economic losses have occurred. We identified important networks by which farmers, industry and researchers communicate and share information, and can develop strategies to raise awareness of IPM. To encourage adoption, farmers need to feel ownership of pasture IPM. Investment in IPM training for farmers through industry extension networks is essential to prepare farmers for the shift away from chemical insecticides to new biologically based control methods. Adoption of IPM will help pastoralists respond to current and new pest challenges.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 187
Author(s):  
Kathy Overton ◽  
Ary A. Hoffmann ◽  
Olivia L. Reynolds ◽  
Paul A. Umina

Continued prophylactic chemical control to reduce pest populations in Australian grain farming systems has limited the effectiveness of biological control via natural enemies in crops within an integrated pest management (IPM) framework. While a variety of data is available to infer potential non-target effects of chemicals on arthropod natural enemies, much of it may be irrelevant or difficult to access. Here, we synthesise the literature relevant to Australian grain crops and highlight current knowledge gaps for potential future investment. A range of testing methodologies have been utilised, often deviating from standardised International Organization for Biological Control (IOBC) protocols. Consistent with findings from over 30 years ago, research has continued to occur predominantly at laboratory scales and on natural enemy families that are easily reared or commercially available. There is a paucity of data for many generalist predators, in particular for spiders, hoverflies, and rove and carabid beetles. Furthermore, very few studies have tested the effects of seed treatments on natural enemies, presenting a significant gap given the widespread global use of neonicotinoid seed treatments. There is a need to validate results obtained under laboratory conditions at industry-relevant scales and also prioritise testing on several key natural enemy species we have identified, which should assist with the adoption of IPM practices and decrease the reliance on broad-spectrum chemicals.


Author(s):  
Joakim Pålsson ◽  
Mario Porcel ◽  
Teun Dekker ◽  
Marco Tasin

AbstractThe widespread use of pesticides along with the simplification of the landscape has had undesirable effects on agroecosystems, such as the loss of biodiversity and the associated ecosystem service biological control. How current production systems can be remodelled to allow for a re-establishment of biological pest control, while preserving productivity, is a major challenge. Here, we tested whether a combination of tools could augment or synergize biological control of insect pests in apple (Malus domestica), comprised of a tortricid pest complex, a geometrid pest complex and the rosy apple aphid. The tools aimed at disrupting mating behaviour of multiple pest species (multispecies mating disruption, “Disrupt”, MMD), attracting natural enemies (a blend of herbivory-induced volatiles, “Attract”, A), or providing refuge and rewards for a diverse insect community (perennial flower strip, “Reward”, R) over a 3-year period. Suction samples were consistently richer in generalist predators but not in parasitoids when multiple tools including MMD + A + R or MMD + A were employed. In addition, lepidopteran pest levels were significantly lower in these plots than in MMD or MMD + R at the end of the 3-year experiment. This was, however, not reflected in survival of artificially established aphid colonies. Our data indicates that multiple, complementary tools can greatly enhance natural enemy level, but also that long-term implementation is needed to fully realize the augmentatory or synergistic potential of complementary components and restore biological control as an ecosystem service of practical relevance.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Ruiqing Shi ◽  
Sanyi Tang ◽  
Wenli Feng

Stage-structured predator-prey models with disease in the prey are constructed. For the purpose of integrated pest management, two types of impulsive control strategies (impulsive release of infective prey and impulsive release of predator) are used. For Case  1, infective prey applications are more frequent than releases of predator (natural enemies). For Case  2, predator (natural enemies) releases are more frequent than infective prey applications. In both cases, we get the sufficient conditions for the global attractivity of the susceptible prey-eradication periodic solution. In addition, the persistence of the systems is also discussed. At last, the results are discussed and some possible future work is put forward.


1991 ◽  
Vol 67 (5) ◽  
pp. 500-505 ◽  
Author(s):  
V. G. Nealis

Forest insect pest management differs from pest management in other renewable-resource industries because of the relative complexity and stability of the forest environment. An important component of this complexity is the rich fauna of natural enemies attacking most forest insect pests. Understanding the relationship between forest insect pests and their natural enemies would permit better insight into the dynamics of pest populations.The active release of natural enemies in inoculative or inundative release strategies is a direct application of biological control to pest management. The conservation of resident natural enemies is an indirect biological control method with great potential. Knowledge of the ecology of natural enemies can be used to modify other forest practices such as reforestation and insecticide use to conserve or enhance the action of natural enemies.


Sign in / Sign up

Export Citation Format

Share Document