scholarly journals Mineralization of pig slurry compost treated with retorted oil shale and dicyandiamide in two contrasting soils

Author(s):  
Luanna Corrêa Monteiro ◽  
Celso Aita ◽  
Janquieli Schirmann ◽  
Stefen Barbosa Pujo ◽  
Diego Antônio Giacomini ◽  
...  

Abstract: The objective of this work was to evaluate carbon and nitrogen mineralization in the soil after the application of composts produced in an automated composting plant, using pig slurry (PS) with and without the addition of retorted oil shale (ROS) and dicyandiamide (DCD) during composting. Laboratory studies were carried out for 180 days on two soils with contrasting characteristics: sandy-loam Typic Paludalf and clay Rhodic Hapludox, which were managed for more than 10 years under a no-tillage system. The composts were thoroughly mixed with the soils. The mineralization of the C and N from the compost was evaluated by measuring continuously CO2 emissions and periodically mineral N (NH4+ + NO3-) content in the soils, respectively. The mineralization of the C from the compost without ROS and DCD was higher in the sandy-loam soil (20.5%) than in the clay soil (13.9%). Similarly, 19.4% of the total N from the compost was mineralized in the sandy-loam soil and 10.9% in the clay soil. The presence of ROS in the compost reduced C mineralization by 54%, compared with the treatment without additives, in the sandy-loam soil and caused net N immobilization in both soils during incubation. The addition of DCD during PS composting did not affect the mineralization of the C and N from the compost in both soils. The addition of ROS during the composting of PS favors the retention of the C from the compost in the soil, especially in the sandy-loam one, but results in a net N immobilization.

2006 ◽  
Vol 54 (4) ◽  
pp. 487-497
Author(s):  
R. K. Setia ◽  
K. N. Sharma ◽  
V. K. Verma

Nitrogen (N) movement in the soil resulting from the long-term application of fertilizer N is an environmental concern when it reaches the groundwater. The distribution of N in the profile of an alkaline sandy loam soil (Typic Haplustept) and its relationship with N uptake by plants was studied after 22 years of continuous cultivation in an annual crop rotation involving maize (Zea mays L.) and wheat (Triticum aestivum L.). Soil samples were collected to a depth of 1.2 m from the 0-0.15, 0.15-0.30, 0.30-0.45, 0.45-0.60, 0.60-0.90 and 0.90-1.20 m layers and analysed for alkaline KMnO4­-oxidisable N (available N) and mineral N (NH4-N and NO3-N). The continuous addition of increasing levels of N resulted in an increase in N content, whereas the combined application of N, P and K caused a decline in its availability. Mineral N (2 M KCl-extractable NH4-N and NO3-N) was the lowest in the N120P35K33.2 treatment plot. The available N and NH4-N decreased with increasing soil depth. However, variations in NO3-N concentration due to differential rates of fertilizer application were observed only to a depth of 0.45 m. This effect was more pronounced in the N180P17.5K33.2 plot. Regression equations were used to predict N uptake by wheat using the N status in different soil layers as independent variables. Multiple regression analysis indicated that the predictability of the relationship between N uptake and available N improved considerably when its status to a soil depth of 0.45 m was included. In the case of NH4-N, a noticeable increase in the coefficient of determination (R2) occurred to a depth of 0.90 m. The R2 value of NO3-N with the N uptake by wheat was quite low in the top layers (to a depth of 0.30 m). However, an increase in the R2 value was observed when lower depths (beyond 0.30 m) were included in the regression analysis, suggesting that the inclusion of subsoil N status is important to achieve better and profitable N supply systems in crop production.


2016 ◽  
Vol 32 (1) ◽  
pp. 127-136 ◽  
Author(s):  
C. Watson ◽  
Y. Singh ◽  
T. Iqbal ◽  
C. Knoblauch ◽  
P. Simon ◽  
...  

Weed Science ◽  
1977 ◽  
Vol 25 (3) ◽  
pp. 264-267 ◽  
Author(s):  
C.G. McWhorter

Field experiments were conducted to study the feasibility of using several dinitroaniline herbicides for the selective control of johnsongrass [Sorghum halepense(L.) Pers.] from seed and rhizomes in soybeans [Glycine max(L.) Merr. ‘Bragg’]. The herbicides were incorporated into the soil with two disk cultivations immediately after application. These were trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) at 0.6 to 2.2 kg/ha, nitralin [4-(methylsulfonyl)-2,6-dinitro-N,N-dipropylaniline] at 0.6 to 2.2 kg/ha, dinitramine (N4,N4-diethyl-α,α,α,-trifluoro-3,5-dinitrotoluene-2,4-diamine) at 0.4 to 1.5 kg/ha, fluchloralin [N-(2-chloroethyl)-2,6-dinitro-N-propyl-4-(trifluoromethyl)aniline] at 0.6 to 2.2 kg/ha, profluralin [N-(cyclopropyl-methyl)-α,α,α-trifluoro-2,6-dinitro-N-propyl-p-toluidine] at 0.8 to 3.4 kg/ha, butralin [4-(1,1-dimethylethyl)-N-(1-methylpropyl)-2,6-dinitrobenzenamine] at 1.7 to 6.7 kg/ha, AC-92390 (N-sec-butyl-2,6-dinitro-3,4-xylidine) at 0.8 to 3.4 kg/ha, and AN-56477 [N,N-di(2-chloroethyl)-4-methyl-2,6-dinitroaniline] at 2.2 to 4.5 kg/ha. On Bosket sandy loam soil, the best average johnsongrass control over a 2-yr period was obtained following profluralin at 1.7 kg/ha and butralin at 3.4 kg/ha. These treatments also resulted in highest average soybean yields. On Sharkey clay soil, profluralin at 3.4 kg/ha and butralin at 6.7 kg/ha resulted in maximum johnsongrass control and soybean yields. Immediate incorporation of profluralin and butralin into both soils for 2 successive years effectively controlled johnsongrass from rhizomes without soybean injury and with greatly increased soybean yields. Trifluralin, nitralin, and fluchloralin also provided acceptable johnsongrass control within individual experiments, and greatly increased soybean yields.


Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 183 ◽  
Author(s):  
Mawiyah Mahmud ◽  
Rosazlin Abdullah ◽  
Jamilah Yaacob

Vermicompost is the product of composting or breaking down organic matter through the use of earthworms. It is rich in essential plant nutrients, and has the ability to enhance the condition and increase the quality of the soil. In the present study, a field trial was conducted from January 2015 until March 2016 to elucidate the effects of vermicompost application (compared to supplementation with chemical fertilizer and no fertilizer) on the sandy loam soil and plant nutrients of pineapple (Ananas comosus var. MD2). The morphophysiology and yield performance of MD2 pineapple grown with vermicompost in the field were also evaluated. In this study, vermicompost was applied onto the sandy loam soils during transplanting, followed by a second application at seven MAP (months after planting) at the rate of 10 t ha−1. On the other hand, the chemical fertilizer was applied based on the normal conventional cultivation practice. The soil and D-leaf samples at six MAP (S1) and during the red bud stage (S2; 10 MAP) were used to determine the soil and plant nutrient contents. The morphology of the plants was evaluated every month, and the fruits that were produced were subjected to quality analysis. Data analysis revealed that soil pH was increased after a second supplementation of vermicompost and contained significantly higher total N (0.15%) in the soils compared to the control (0.07%). There was no significant difference between plants supplied with chemical fertilizer and vermicompost in terms of plant height, number of leaves, or the length and width of D-leaves. However, different fertilization treatments were found to affect the yield and physical characteristics of the resulting fruits. Plants supplied with chemical fertilizer produced the highest fruit yield (136.97 t ha−1) with the largest fruit size, followed by vermicompost (121.39 t ha−1) and the control (94.93 t ha−1). However, fruits supplied with vermicompost were observed to have the smallest crowns. Taken together, these results indicated that the use of vermicompost produced pineapple plants with excellent growth performance, comparable to that obtained when chemical fertilizer was used. Also, based on the cost analysis conducted, it was shown that the total cost (fertilizer and labor) for plants grown with vermicompost was lower than plants grown with chemical fertilizer. However, the usage of vermicompost as the single source of nutrients is not suggested for this type of soil and field conditions, but can be used as a supplement to maintain the soil quality and ensure agricultural sustainability.


1994 ◽  
Vol 74 (3) ◽  
pp. 307-314 ◽  
Author(s):  
C. A. Grant ◽  
L. D. Bailey

Distribution of NO3, P, K, Cl, pH and conductance through the soil profile were measured on two soil types after 4 yr of crop production using zero tillage (ZT) or conventional tillage (CT), with or without addition of KCl. All plots received N and P fertilizer each year as banded applications. Surface concentrations of NO3-N were higher under ZT than CT, particularly on the fine sandy loam soil. Accumulation of NO3-N also occurred in the 60- to 120-cm zone, under both tillage systems in both soils. Carryover of NO3-N was substantially greater on the silty clay than the fine sandy loam soil. Phosphate accumulated at the depth of band application in both soils under both tillage systems. Potassium concentration was generally higher under ZT than CT in the surface 15 cm of both soils, presumably due to surface retention of K from fertilizer applications and crop residues. Chloride was higher under ZT than CT in the surface 5 cm of both soils, but was higher under CT than ZT in the 30- to 60-cm and 60- to 120-cm depths in the silty clay soil, if KCl had been applied. The pH on both soils under both tillage systems was reduced in the 10- to 12.5-cm soil depth, corresponding to the zone of fertilizer application. On the silty clay soil, pH was higher under ZT than CT in the 10- to 15-cm depth and tended to be higher under ZT than CT at all depths below 15 cm. Conductance was not influenced by tillage in either soil. Application of KCl increased K and Cl concentrations in the surface 15 cm on both soils. Concentration of Cl was increased to 120 cm in both soils, indicating the mobility and leaching potential of this anion. Conductance and pH were increased in the 2.5- to 5.0-cm and 10- to 12.5-cm depths by KCl application in the fine sandy loam soil, but on the silty clay soil, only conductance was increased. Key words: Zero tillage, nutrient stratification, pH stratification


Author(s):  
Giovani Apolari Ghirardello ◽  
Lucas da Silva Araújo ◽  
Luisa Carolina Baccin ◽  
Mateus Augusto Dotta ◽  
Raphael Oliveira Souza ◽  
...  

Selectivity index is a way of assessing the discrimination of herbicide to a given crop by observing its effects on the crop and the weeds. The aim was to obtain the selectivity index of indaziflam herbicide to sugarcane cultivar IACSP95-5000 as a function of five weed species in two soils textures. The experiment was carried out in a greenhouse at Piracicaba, São Paulo, Brazil. The treatments consisted of indaziflam doses (0; 12.5; 25; 50; 100; 200; 400; 800 and 1,600 g of the active ingredient (ai) ha-1), applied in pre-emergence of the sugarcane and of the weeds Urochloa decumbens, Urochloa plantaginea, Digitaria horizontalis, Panicum maximum and Rottboellia cochinchinensis. In sandy loam soil, a 100% control for all weeds was provided at 25 g ai ha-1. In clay soil, for D. horizontalis the 90% reduction in total dry mass (ED90) was obtained at 25 g ai ha-1, for R. cochinchinensis at 193 g ai ha-1, for U. plantaginea at 152 g ai ha-1, for P. maximum at 124 g ai ha-1, and for U. decumbens at 94 g ai ha-1. Indaziflam was selective to IACSP95-5000 in both soils, with 10% of reduction in dry mass (ED10) at 137 g ai ha-1 for soil with a sandy loam texture and 353 g ai ha-1 for clay soil. The selectivity index was higher than 1 for all weeds in clay soil. It was not possible to obtain the selectivity index for sandy loam soil due to species susceptibility to the herbicide.


Author(s):  
George O. Odugbenro ◽  
Zhihua Liu ◽  
Yankun Sun

An incubation study was conducted to determine the influence of biochar and corn straw on CO2-C emission, soil organic C, microbial biomass C and N, total N, and mineral N (NH4+-N and NO3--N) in a clay loam soil. Six treatments viz., CK (Control); S (Soil + 1% straw); B1 (Soil + 0.5% biochar); B2 (Soil + 2% biochar); SB1 (Soil + 1% straw + 0.5% biochar); SB2 (Soil + 1% straw + 2% biochar) were tested with three replications. Results showed that straw addition to soil with or without biochar increased CO2-C emission while sole-biochar addition (2%) reduced it. Straw and biochar also increased the soil microbial biomass C and N but greatest increase in microbial biomass N (111.9 µg g-1) was recorded by biochar-straw combination. SOC and total N significantly increased following biochar and straw additions which suggest that organic amendments can improve soil chemical properties. Additionally, for soil mineral N, biochar reduced NH4+-N and NO3--N concentrations while straw increased NH4+-N concentration but greatly reduced that of NO3--N.


2019 ◽  
Vol 43 ◽  
Author(s):  
Matheus Mendes Reis ◽  
Ariovaldo José da Silva ◽  
Leonardo David Tuffi Santos ◽  
Érika Manuela Gonçalves Lopes ◽  
Rodrigo Eduardo Barros ◽  
...  

ABSTRACT Wastewater can be considered an excellent nutritional and water source for cultivated plants. However, the presence of high concentrations of salts and toxic compounds can negatively affect crops. The effect of irrigation with different concentrations of treated wastewater on the accumulation of nutrients and gas exchange aspects of millet (Pennisetum glaucum (L.) R. Br.) grown in clay soil and sandy loam soil was analyzed. This study was conducted in a greenhouse (16°40’57,50” S; 43°50’26,07” O; 650 m) in a 5 x 2 factorial design, consisting of five levels of concentration of treated wastewater (0, 25, 50, 75, and 100%), combined with two types of soil (clay and sandy loam). The experiment was designed in randomized blocks with four replicates. The increase in treated wastewater concentration in irrigation water applied to clay soil and sandy loam soil favored the increase of net photosynthesis, transpiration rate, stomatal conductance, leaf chlorophyll content and accumulation of macro- and micronutrients in millet plants. Millet plants grown in clay soil showed an average increase of 23% in gas exchange capacity and 71% in accumulation of macro- and micronutrients, when compared with treatments in sandy loam soil. Therefore, treated wastewater contributes to the increase in gas exchange capacity and greater accumulation of nutrients in millet plants, which represents an alternative for reduced demand for fresh water and use of chemical fertilizers.


2015 ◽  
Vol 39 (3) ◽  
pp. 437-446 ◽  
Author(s):  
MN Islam ◽  
MM Rahman ◽  
MJA Mian ◽  
MH Khan ◽  
R Barua

An experiment was conducted at the net house of the Department of Soil Science, Bangladesh Agricultural University (BAU), Mymensingh, Bangladesh during February to June (boro season) of 2009. The objective was to find out the leaching loss of N, P, and K in the Old Brahmaputra Floodplain Soil under continuous standing water (CSW) condition. The soil was sandy loam in texture having pH 6.6, total N 0.08%, available P 7.00 mg/kg, exchangeable K 0.07 me/100g soil, and available S 7.5 mg/kg. The experiment was laid out in completely randomized design with three replications. There were six treatments, such as T0 (control), T1 (N120 P25 K60 S20 recommended dose), T2 (N180 P37 K90 S30 kg/ha i.e., 150% of the recommended dose), T3 (75% N of T1 from chemical fertilizer and 25% N from cowdung 2.5 t/ha and PKS of recommended dose from chemical fertilizer on the basis of PKS content in cowdung), T4 (as T1 but N109 kg/ha from USG) and T5 (as T1 but N applied as foliar spray). The nutrients P, K, and S were applied as basal dose in the pots while urea was applied in three equal splits except T4 and T5. One USG per pot was placed after 7 days of transplanting in T4. In T5, urea was applied as foliar spray at 10 days interval. Leachates from individual pots were collected at 15 days intervals to determine the amount of loss of NPK. Results showed that leaching loss of NPK in the sandy loam soil under CSW condition varied widely due to different treatments over time. The total leaching loss of N, P, and K during the growing season varied from 22.23 to 91.21, 0.063 to 1.95, and 35.22 to 42.01 kg/ha, respectively. Application of chemical fertilizer at higher rates resulted in greater loss of nutrients. Integrated approach of fertilizer management could minimize such losses to a great extent. Application of N in the form of USG reduced the N loss significantly. DOI: http://dx.doi.org/10.3329/bjar.v39i3.21987 Bangladesh J. Agril. Res. 39(3): 437-446, September 2014


Sign in / Sign up

Export Citation Format

Share Document