scholarly journals Organic Bovine Graft Associated With PRP In Rabbit Calvaria

2011 ◽  
Vol 15 (02) ◽  
pp. 208-213
Author(s):  
Lara Maria Alencar Ramos ◽  
Jonas Dantas Batista ◽  
Darceny Zanetta-Barbosa ◽  
Paula Dechichi ◽  
Flaviana Soares Rocha

Summary Introduction: Repairing large bone defects is a huge challenge that reconstructive surgery currently faces. Objective: The objective of this study was to perform the histological evaluation of bone repair in rabbit calvaria when using bovine bone graft (Gen-ox-organic®) associated with platelet-rich plasma (PRP). Method: 12 rabbits were used and two bone fragments were bilaterally removed from calvaria. Then, 24 surgical sites were randomly divided into 3 groups: coagulum (group I), organic (group II) and PRP-included organic (group III). After four weeks, the animals were sacrificed and the grafted area removed, fixed in 10% formalin with PBS 0.1 M, and embedded in paraffin. Study method: The analyzed histological parameters were: defective area filled with the newly-formed bone, graft's giant cells and particles, as well as the new bone formation associated with the particles. Group I's defects were filled with fibrous tissue attaching the periosteum and revealed a little bone formation peripherally. In both groups II and III, a similar standard was noticed in addition to the absence of graft particles and giant cells. There was no significant difference in the number of giant cells, graft particles and new bone formation around the particles between the grafted material and the PRP-related group. Conclusion: The results achieved indicate that the organic biomaterial neither separately nor jointly with PRP improves bone regeneration.

2011 ◽  
Vol 37 (5) ◽  
pp. 511-518 ◽  
Author(s):  
Flaviana Soares Rocha ◽  
Lara Maria Alencar Ramos ◽  
Jonas Dantas Batista ◽  
Darceny Zanetta-Barbosa ◽  
Eloísa Amália Vieira Ferro ◽  
...  

Autogenous bone tissue has regeneration potential; however, this capacity may not be sufficient in larger bone defects. The aim of this study is to histologically evaluate anorganic bovine bone grafts (GenOx Inorg) with or without platelet-rich plasma (PRP). Two bone lesions were created in calvaria of 12 rabbits. The 24 surgical lesions were separated into 3 groups: coagulous, anorganic, and anorganic with PRP. At the 4-week time point, the animals were euthanized and the grafted area removed, fixed in formalin 10% with phosphate buffered saline, 0.1 M, and embedded in paraffin. The histologic parameters analyzed were new bone filling the defect area, presence of giant cells and particles of the graft, and new bone formation associated with the particles. In the coagulous group, defects were filled with fibrous tissue that attached the periosteum and little bone neoformation in the periphery. In anorganic groups with or without PRP, little new bone formation in the periphery of the defect was observed; however, in the center of some defects there was new bone. Moderate presence of giant cells and little new bone formation was associated with the innumerous graft particles. Histologic results revealed no statistically significant differences among the defects new bone fill between the studied groups (P  =  .64). There was no significant difference in the number of giant cells (P  =  .60), graft particles (P  =  .46), and new bone formation around graft particles (P  =  .26), whether PRP was added or not. Anorganic bone, isolated or mixed with PRP, was biocompatible and osteoconductive, while maintaining bone volume.


2004 ◽  
Vol 15 (3) ◽  
pp. 175-180 ◽  
Author(s):  
Gabriel Ramalho Ferreira ◽  
Tania Mary Cestari ◽  
José Mauro Granjeiro ◽  
Rumio Taga

The ability of a pool of bovine bone morphogenetic proteins bound to synthetic microgranular hydroxyapatite (BMPb-HA) to stimulate bone repair was determined in rat critical size defects. An 8-mm diameter defect was created in the calvaria of 25 rats. In 15 rats, the defects were filled with BMPb-HA homogenized with blood (experimental group), and in 10 rats the defects were filled only with blood clots (control). The calvariae of experimental rats were collected 1, 3 and 6 months after surgery and of the control rats at the end of surgery and 6 months thereafter. The morphometric results obtained in the radiographs showed an absence of new bone formation at 1 and 3 months post-surgery and, histologically, the defects were filled with fibrous connective tissue and numerous foci of a foreign body-type granulomatous reaction around hydroxyapatite agglomerates. At the end of 6 months, the number and size of the granulomatous foci decreased and the area of the defects was reduced by 22% compared to the 0-hour control due to the formation of new bone at their borders, although the mean area was similar to the 6-month control. We conclude that the use of BMPb-HA in the treatment of critical size bone defects of the rat skull leads to the formation of a foreign body-type granulomatous reaction that markedly inhibits new bone formation, suggesting that synthetic microgranular hydroxyapatite does not represent a good carrier for BMP-induced bone formation.


2013 ◽  
Vol 7 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Jeppe Barckman ◽  
Jorgen Baas ◽  
Mette Sørensen ◽  
Joan E Bechtold ◽  
Kjeld Soballe

Purpose: Periosteum provides essential cellular and biological components necessary for fracture healing and bone repair. We hypothesized that augmenting allograft bone by adding fragmented autologous periosteum would improve fixation of grafted implants. Methods: In each of twelve dogs, we implanted two unloaded cylindrical (10 mm x 6 mm) titanium implants into the distal femur. The implants were surrounded by a 2.5-mm gap into which morselized allograft bone with or without addition of fragmented autologous periosteum was impacted. After four weeks, the animals were euthanized and the implants were evaluated by histomorphometric analysis and mechanical push-out test. Results: Although less new bone was found on the implant surface and increased volume of fibrous tissue was present in the gap around the implant, no difference was found between treatment groups regarding the mechanical parameters. Increased new bone formation was observed in the immediate vicinity of the periosteum fragments within the bone graft. Conclusion: The method for periosteal augmentation used in this study did not alter the mechanical fixation although osseointegration was impaired. The observed activity of new bone formation at the boundary of the periosteum fragments may indicate maintained bone stimulating properties of the transplanted cambium layer. Augmenting the bone graft by smaller fragments of periosteum, isolated cambium layer tissue or cultured periosteal cells could be studied in the future.


2006 ◽  
Vol 14 (3) ◽  
pp. 213-218 ◽  
Author(s):  
Aline Scalone Brentel ◽  
Luana Marotta Reis de Vasconcellos ◽  
Marize Varella Oliveira ◽  
Mário Lima de Alencastro Graça ◽  
Luis Gustavo Oliveira de Vasconcellos ◽  
...  

The purpose of this study was to analyze the bone repair around commercially pure titanium implants with rough and porous surface, fabricated using powder metallurgy technique, after their insertion in tibiae of rabbits. Seven male rabbits were used. Each animal received 3 porous-surface implants in the left tibia and 3 rough-surface implants in the right tibia. The rabbits were sacrificed 4 weeks after surgery and fragments of the tibiae containing the implants were submitted to histological and histomorphometric analyses to evaluate new bone formation at the implant-bone interface. Means (%) of bone neoformation obtained in the histomorphometric analysis were compared by Student's t-test for paired samples at 5% significance level.. The results of the histological analysis showed that osseointegration occurred for both types of implants with similar quality of bone tissue. The histomorphometric analysis revealed means of new bone formation at implant-bone interface of 79.69 ± 1.00% and 65.05 ± 1.23% for the porous- and rough-surface implants, respectively. Statistically significant difference was observed between the two types of implants with respect to the amount new bone formation (p<0.05). In conclusion, the porous-surface implants contributed to the osseointegration because they provide a larger contact area at implant-bone interface.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Krishna C. R. Kolan ◽  
Yue-Wern Huang ◽  
Julie A. Semon ◽  
Ming C. Leu

The pore geometry of scaffold intended for the use in the bone repair or replacement is one of the most important parameters in bone tissue engineering. It affects not only the mechanical properties of the scaffold but also the amount of bone regeneration after implantation. Scaffolds with five different architectures (cubic, spherical, x, gyroid, and diamond) at different porosities were fabricated with bioactive borate glass using the selective laser sintering (SLS) process. The compressive strength of scaffolds with porosities ranging from 60% to 30% varied from 1.7 to 15.5 MPa. The scaffold’s compressive strength decreased significantly (up to 90%) after 1-week immersion in simulated body fluids. Degradation of scaffolds is dependent on porosity, in which the scaffold with the largest surface area has the largest reduction in strength. Scaffolds with traditional cubic architecture and biomimetic diamond architecture were implanted in 4.6 mm diameter full-thickness rat calvarial defects for 6 weeks to evaluate the bone regeneration with or without bone morphogenetic protein 2 (BMP-2). Histological analysis indicated no significant difference in bone formation in the defects treated with the two different architectures. However, the defects treated with the diamond architecture scaffolds had more fibrous tissue formation and thus have the potential for faster bone formation. Overall, the results indicated that borate glass scaffolds fabricated using the SLS process have the potential for bone repair and the addition of BMP-2 significantly improves bone regeneration.


2021 ◽  
Vol 10 (4) ◽  
pp. e48010414143
Author(s):  
Geraldo Luiz Griza ◽  
Roberta Okamoto ◽  
Daniela Colet ◽  
Ricardo Augusto Conci ◽  
Osvaldo Magro-Filho

Objectives: This study evaluated, through histological and immunohistochemical analysis the bone formation and remodeling after a maxillary sinus lift. Material and methods: 25 patients from 41 to 65 years of age, with inadequate bone volume in the posterior maxillary region and remaining native bone less than or equal to 5 mm, as measured radiographically, were selected and underwent maxillary sinus lift surgery, through the open technique. They were distributed in 3 groups: A - particulate, autogenous bone, AB - autogenous and heterogeneous bone, and B - only heterogeneous bone.  Six months after this intervention, the patients were submitted to a surgery for the installation of implants and concomitant removal of the grafted bone sample from the surgical site. Results: The histological evaluation showed bone formation in the three groups, with presence of mature bone. In groups B and AB, the presence of granules of the biomaterial surrounded by bone tissue was observed. A statistical analysis showed significant difference (ANOVA p=0,002), suggesting greater bone formation in the autogenous group. In an immunohistochemical evaluation, no statistically significant differences were observed in the comparison between the experimental groups (A, B and AB), as well as in the proteins analyzed (OC: p= 0.657; VEGF: p= 0,133; TRAP: p= 0.163). Conclusion: The use of Bio-Oss ®, whether or not associated to autogenous bone, for a maxillary sinus lift through the side window technique results in bone repair. A predictable amount of bone formation is attained when this osteoconductive biomaterial is used.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Lara Schorn ◽  
Tim Fienitz ◽  
Kathrin Berndsen ◽  
Norbert R. Kübler ◽  
Henrik Holtmann ◽  
...  

Abstract Background The aim of this study was to compare new bone formation, resorbed bone matrix, and fibrous enclosed residual bone substitute material in laterally augmented alveolar bone defects using allogeneic, pre-treated and cleaned human bone blocks (tested in dogs, therefore considered to be xenogeneic), and pre-treated and cleaned bovine cancellous bone blocks, both with and without a collagen membrane in order to evaluate their augmentative potential. Methods Thirty-two critical size horizontal defects were prepared in the mandible of 4 adult foxhound dogs (8 per dog, 4 on each side). After 3 months of healing, the defects were laterally augmented in a split-mouth-design with either human (HXB) or bovine solvent-preserved bone blocks (BXB). Afterwards, defects were randomly covered with a bovine collagenous membrane (HXB + M, BXB + M). After a healing interval of 6 months, percentages of new bone formation, resorbed bone matrix, and fibrous enclosed residual bone substitute material were compared. Results Results showed little new bone formation of up to 3.7 % in human bone blocks (HXB 3.7 % ± 10.2, HXB + M 0.3 %± 0.4, BXB, 0.1 % ± 0.8, BXB + M 2.6 % ± 3.2, p = > 0.05). Percentages of fibrous encapsulation were higher in human bone blocks than in bovine bone blocks (HXB 71.2 % ± 8.6, HXB + M 73.71 % ± 10.6, BXB, 60.5 % ± 27.4, BXB + M 52.5 % ± 28.4, p = > 0.05). Resorption rates differed from 44.8 % in bovine bone blocks covered with a membrane to 17.4 % in human bone blocks (HXB 17.4 % ± 7.4, HXB + M 25.9 % ± 10.7, BXB, 38.4 % ± 27.2, BXB + M 44.8 % ± 29.6, p = > 0.05). The use of additional membranes did not significantly affect results. Conclusions Within its limitations, results of this study suggest that solvent-preserved xenogenic human and bovine bone blocks are not suitable for lateral bone augmentation in dogs. Furthermore, defect coverage with a membrane does not positively affect the outcome.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1993 ◽  
Author(s):  
Kunio Ishikawa ◽  
Youji Miyamoto ◽  
Akira Tsuchiya ◽  
Koichiro Hayashi ◽  
Kanji Tsuru ◽  
...  

Three commercially available artificial bone substitutes with different compositions, hydroxyapatite (HAp; Neobone®), carbonate apatite (CO3Ap; Cytrans®), and β-tricalcium phosphate (β-TCP; Cerasorb®), were compared with respect to their physical properties and tissue response to bone, using hybrid dogs. Both Neobone® (HAp) and Cerasorb® (β-TCP) were porous, whereas Cytrans® (CO3Ap) was dense. Crystallite size and specific surface area (SSA) of Neobone® (HAp), Cytrans® (CO3Ap), and Cerasorb® (β-TCP) were 75.4 ± 0.9 nm, 30.8 ± 0.8 nm, and 78.5 ± 7.5 nm, and 0.06 m2/g, 18.2 m2/g, and 1.0 m2/g, respectively. These values are consistent with the fact that both Neobone® (HAp) and Cerasorb® (β-TCP) are sintered ceramics, whereas Cytrans® (CO3Ap) is fabricated in aqueous solution. Dissolution in pH 5.3 solution mimicking Howship’s lacunae was fastest in CO3Ap (Cytrans®), whereas dissolution in pH 7.3 physiological solution was fastest in β-TCP (Cerasorb®). These results indicated that CO3Ap is stable under physiological conditions and is resorbed at Howship’s lacunae. Histological evaluation using hybrid dog mandible bone defect model revealed that new bone was formed from existing bone to the center of the bone defect when reconstructed with CO3Ap (Cytrans®) at week 4. The amount of bone increased at week 12, and resorption of the CO3Ap (Cytrans®) was confirmed. β-TCP (Cerasorb®) showed limited bone formation at week 4. However, a larger amount of bone was observed at week 12. Among these three bone substitutes, CO3Ap (Cytrans®) demonstrated the highest level of new bone formation. These results indicate the possibility that bone substitutes with compositions similar to that of bone may have properties similar to those of bone.


2017 ◽  
Vol 22 (2) ◽  
pp. 116-123 ◽  
Author(s):  
Takefumi Kamakura ◽  
Daniel J. Lee ◽  
Barbara S. Herrmann ◽  
Joseph B. Nadol Jr.

The Cogan syndrome is a rare disorder characterized by nonsyphilitic interstitial keratitis and audiovestibular symptoms. Profound sensorineural hearing loss has been reported in approximately half of the patients with the Cogan syndrome resulting in candidacy for cochlear implantation in some patients. The current study is the first histopathologic report on the temporal bones of a patient with the Cogan syndrome who during life underwent bilateral cochlear implantation. Preoperative MRI revealed tissue with high density in the basal turns of both cochleae and both vestibular systems consistent with fibrous tissue due to labyrinthitis. Histopathology demonstrated fibrous tissue and new bone formation within the cochlea and vestibular apparatus, worse on the right. Severe degeneration of the vestibular end organs and new bone formation in the labyrinth were seen more on the right than on the left. Although severe bilateral degeneration of the spiral ganglion neurons was seen, especially on the right, the postoperative word discrimination score was between 50 and 60% bilaterally. Impedance measures were generally higher in the right ear, possibly related to more fibrous tissue and new bone found in the scala tympani on the right side.


Sign in / Sign up

Export Citation Format

Share Document