scholarly journals ASSESSMENT OF DIGITAL TERRAIN MODELS IN DAM BREAK SIMULATION STUDIES

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Rodrigo Pereira Lima ◽  
Marcos Antonio Timbó Elmiro ◽  
Marcelo Antonio Nero ◽  
Plínio da Costa Temba ◽  
Bráulio Magalhães Fonseca ◽  
...  

Abstract: Dams are structures built for controlling the flow of water for many useful purposes such as water supply, power generation, retention of mining and industrial waste, as well as recreation and flood control. However, they bring together some risk of dam body collapse causing damage for the dam downstream areas. Therefore, hypothetical dam break studies which provide mapping of areas potentially attainable in the event of a rupture are especially important for planning actions aiming minimization of associated losses. The aim of this research is to assess the degree of adherence or similarity between flood maps obtained by simulation studies and those effectively obtained from the collapse itself occurred in Dam I owned by Vale SA on January 25, 2019. The study focuses mainly on comparing the effects over the simulated flood maps caused by use of different representation of dam downstream topography relief, namely Shuttle Radar Topography Mission (SRTM), Advanced Land Observing Satellite from Alaska Satellite Facility (ALOS_ASF) and Airborne Laser Scanning (ALS) models. The simulations were performed using the HEC-RAS software developed by the US Army Corps of Engineers considering hypothesis of strong influence of relief in flood mapping results. In this way, three simulation tests were carried out for evaluation and discussion. In the first simulation, the digital terrain model derived from ALS was used. The second simulation was carried out associating the digital surface model ALOS_ASF with a spatial resolution of 12.5 m. Finally, the SRTM digital elevation model with 30 m spatial resolution provided by the United States Geological Survey (USGS) was used in third simulation. Results showed better adherence to simulations using data from ALS. This was verified by visual analysis over high resolution orthorectified images and by calculating statistics indicators such as the (F) index. Conclusions pointed out that flood patches resulting from simulation are critical tools for taking actions involving areas and populations to be affected, so the best relief model technologies like ALS data should be used in simulation.

2018 ◽  
Vol 10 (8) ◽  
pp. 1256 ◽  
Author(s):  
Mitchell Goldberg ◽  
Sanmei Li ◽  
Steven Goodman ◽  
Dan Lindsey ◽  
Bill Sjoberg ◽  
...  

Hurricane Harvey made landfall as a Category-4 storm in the United States on 25 August 2017 in Texas, causing catastrophic flooding in the Houston metropolitan area and resulting in a total economic loss estimated to be about $125 billion. To monitor flooding in the areas affected by Harvey, we used data from sensors aboard the Suomi National Polar-Orbiting Partnership Satellite (SNPP) and the new Geostationary Operational Environmental Satellite (GOES)-16. The GOES-16 Advanced Baseline Imager (ABI) observations are available every 5 min at 1-km spatial resolution across the entire United States, allowing for the possibility of frequent cloud free views of the flooded areas; while the higher resolution 375-m imagery available twice per day from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the SNPP satellite can observe more details of the flooded regions. Combining the high spatial resolution from VIIRS with the frequent observations from ABI offers an improved capability for flood monitoring. The flood maps derived from the SNPP VIIRS and GOES-16 ABI observations were provided to the Federal Emergency Management Agency (FEMA) continuously during Hurricane Harvey. According to FEMA’s estimate on 3 September 2017, approximately 155,000 properties might have been affected by the floodwaters of Hurricane Harvey.


2012 ◽  
Vol 16 (8) ◽  
pp. 3029-3048 ◽  
Author(s):  
B. Livneh ◽  
D. P. Lettenmaier

Abstract. We describe a parameter estimation framework for the Unified Land Model (ULM) that utilizes multiple independent data sets over the continental United States. These include a satellite-based evapotranspiration (ET) product based on MODerate resolution Imaging Spectroradiometer (MODIS) and Geostationary Operational Environmental Satellites (GOES) imagery, an atmospheric-water balance based ET estimate that utilizes North American Regional Reanalysis (NARR) atmospheric fields, terrestrial water storage content (TWSC) data from the Gravity Recovery and Climate Experiment (GRACE), and streamflow (Q) primarily from the United States Geological Survey (USGS) stream gauges. The study domain includes 10 large-scale (≥105 km2) river basins and 250 smaller-scale (<104 km2) tributary basins. ULM, which is essentially a merger of the Noah Land Surface Model and Sacramento Soil Moisture Accounting Model, is the basis for these experiments. Calibrations were made using each of the data sets individually, in addition to combinations of multiple criteria, with multi-criteria skill scores computed for all cases. At large scales, calibration to Q resulted in the best overall performance, whereas certain combinations of ET and TWSC calibrations lead to large errors in other criteria. At small scales, about one-third of the basins had their highest Q performance from multi-criteria calibrations (to Q and ET) suggesting that traditional calibration to Q may benefit by supplementing observed Q with remote sensing estimates of ET. Model streamflow errors using optimized parameters were mostly due to over (under) estimation of low (high) flows. Overall, uncertainties in remote-sensing data proved to be a limiting factor in the utility of multi-criteria parameter estimation.


2015 ◽  
Vol 15 (9) ◽  
pp. 2161-2172 ◽  
Author(s):  
X. Chen ◽  
L. Chen ◽  
J. Zhao ◽  
Z. Yu

Abstract. This study applied the two-dimensional AdH (adaptive hydraulics) hydrodynamic model to a river reach to analyze flood hydraulics on complex floodplains. Using the AdH model combined with bathymetry and topographic data from the United States Geological Survey (USGS) seamless server and the United States Army Corps of Engineers (USACE), we intended to examine the interactions between the channel and floodplain of a 10 km stretch at McCarran Ranch, which is located at the lower Truckee River in Nevada. After calibrating the model, we tested the dependence of the modeling results on mesh density, input parameters, and time steps and compared the modeling results to the existing gauged data (both the discharge and water stage heights). Results show that the accuracy of prediction from the AdH model may decline slightly at higher discharges and water levels. The modeling results are more sensitive to the roughness coefficient of the main channel, which suggests that the model calibration should give priority to the main channel roughness. A detailed analysis of the floodwater dynamics was then conducted using the modeling approach to examine the hydraulic linkage between the main channel and floodplains. We found that large flood events could lead to a significantly higher proportion of total flow being routed through the floodplains. During peak discharges, a river channel diverted as much as 65 % of the total discharge into the floodplain. During the periods of overbank flow, the transboundary flux ratio was approximately 5 to 45 % of the total river discharge, which indicates substantial exchange between the main channel and floodplains. The results also showed that both the relations of the inundation area and volume versus the discharge exhibit an apparent looped curve form, which suggests that flood routing has an areal hysteresis effect on floodplains.


2012 ◽  
Vol 9 (4) ◽  
pp. 4417-4463 ◽  
Author(s):  
B. Livneh ◽  
D. P. Lettenmaier

Abstract. We describe a parameter estimation framework for the Unified Land Model (ULM) that utilizes multiple independent data sets over the Continental United States. These include a satellite-based evapotranspiration (ET) product based on MODerate resolution Imaging Spectroradiometer (MODIS) and Geostationary Operation Environmental Satellites (GOES) imagery, an atmospheric-water balance based ET estimate that utilizes North American Regional Reanalysis (NARR) atmospheric fields, terrestrial water storage content (TWSC) data from the Gravity Recovery and Climate Experiment (GRACE), and streamflow (Q) primarily from the United States Geological Survey (USGS) stream gauges. The study domain includes 10 large-scale (≥105 km2) river basins and 250 smaller-scale (<104 km2) tributary basins. ULM, which is essentially a merger of the Noah Land Surface Model and Sacramento Soil Moisture Accounting model, is the basis for these experiments. Calibrations were made using each of the criteria individually, in addition to combinations of multiple criteria, with multi-criteria skill scores computed for all cases. At large-scales calibration to Q resulted in the best overall performance, whereas certain combinations of ET and TWSC calibrations lead to large errors in other criteria. At small scales, about one-third of the basins had their highest Q performance from multi-criteria calibrations (to Q and ET) suggesting that traditional calibration to Q may benefit by supplementing observed Q with remote sensing estimates of ET. Model streamflow errors using optimized parameters were mostly due to over (under) estimation of low (high) flows. Overall, uncertainties in remote-sensing data proved to be a limiting factor in the utility of multi-criteria parameter estimation.


2015 ◽  
Vol 8 (11) ◽  
pp. 9415-9449 ◽  
Author(s):  
N. Mizukami ◽  
M. P. Clark ◽  
K. Sampson ◽  
B. Nijssen ◽  
Y. Mao ◽  
...  

Abstract. This paper describes the first version of a stand-alone runoff routing tool, mizuRoute, which post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool can utilize both traditional grid-based river network and vector-based river network data, which includes river segment lines and the associated drainage basin polygons. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The routing process is simulated as two separate steps. The first is hillslope routing, which uses a gamma distribution to construct a unit-hydrograph that represents the transport of runoff from a hillslope to a catchment outlet. The second step is river channel routing, which is performed with one of two routing scheme options: (1) a kinematic wave tracking (KWT) routing procedure; and (2) an impulse response function–unit hydrograph (IRF-UH) routing procedure. The mizuRoute system also includes tools to pre-process spatial river network data. This paper demonstrates mizuRoute's capabilities with spatially distributed streamflow simulations based on river networks from the United States Geological Survey (USGS) Geospatial Fabric (GF) dataset, which contains over 54 000 river segments across the contiguous United States (CONUS). A brief analysis of model parameter sensitivity is also provided. The mizuRoute tool can assist model-based water resources assessments including studies of the impacts of climate change on streamflow.


Sign in / Sign up

Export Citation Format

Share Document