scholarly journals Application of MEMS accelerometer of smartphones to define natural frequencies and damping ratios obtained from concrete viaducts and footbridge

Author(s):  
Jorge Dalmas Braido ◽  
Zacarias Martin Chamberlain Pravia

Abstract The continuous development of smartphones has garnered considered research attention owing to the possibility of its use in different engineering applications. MEMS accelerometers available on smartphones are useful for structural health monitoring. This study is aimed at determining the use of smartphones in the calibration and correction of the sampling rate for natural frequency and damping identification. Three concrete bridges were used in the case studies. The results indicate that smartphones can be used to understand some dynamic parameters.

Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 515 ◽  
Author(s):  
Long Zhao ◽  
Xinbo Huang ◽  
Ye Zhang ◽  
Yi Tian ◽  
Yu Zhao

In this paper, we present a vibration-based transmission tower structural health monitoring system consisting of two parts that identifies structural changes in towers. An accelerometer group realizes vibration response acquisition at different positions and reduces the risk of data loss by data compression technology. A solar cell provides the power supply. An analyser receives the data from the acceleration sensor group and calculates the transmission tower natural frequencies, and the change in the structure is determined based on natural frequencies. Then, the data are sent to the monitoring center. Furthermore, analysis of the vibration signal and the calculation method of natural frequencies are proposed. The response and natural frequencies of vibration at different wind speeds are analysed by time-domain signal, power spectral density (PSD), root mean square (RMS) and short-time Fouier transform (STFT). The natural frequency identification of the overall structure by the stochastic subspace identification (SSI) method reveals that the number of natural frequencies that can be calculated at different wind speeds is different, but the 2nd, 3rd and 4th natural frequencies can be excited. Finally, the system was tested on a 110 kV experimental transmission line. After 18 h of experimentation, the natural frequency of the overall structure of the transmission tower was determined before and after the tower leg was lifted. The results show that before and after the tower leg is lifted, the natural frequencies of each order exhibit obvious changes, and the differences in the average values can be used as the basis for judging the structural changes of the tower.


Author(s):  
Zeaid Hasan ◽  
Ghassan Atmeh

Structural health monitoring (SHM) is the process of damage identification in structural systems which have been an area of interest and a well-recognized field of technology in the past decade. Such systems involve the integration of smart materials, sensors and decision-making algorithms into the structure to detect damage, evaluate the structural integrity and predict the remaining life time. These systems have the potential to replace traditional non-destructive evaluation (NDE) of structures. This study focuses on presenting an automated structural health monitoring (SHM) system based on detecting shifts in natural frequencies of the structure. The damage detection technique is implemented on a cracked composite beam vibrating in coupled bending-torsion where the crack is assumed open. Modal analysis is conducted on the composite beam in order to predict the natural frequency and the associated mode shapes. Based on this analysis, a database of information related to the specific composite beam being analyzed such as layups and natural frequencies are stored. The natural frequency will be measured and compared to that database for damage detection. A finite element model is also presented and compared with the analytical results. It is observed that the variation of natural frequencies in the presence of a crack is affected by the crack ratio, crack location and fiber orientation. In particular, the variation pattern is different as the magnitude of bending-torsion coupling changes due to different fiber angles. A simple circuit containing a microcontroller is implemented to simulate the automated SHM concept. The microcontroller serves as the data storage device as well as the decision maker based on the instantaneous comparison between the healthy and the damaged structure. The proposed system may be implemented in many structural components such as aircraft frames and bridges. This SHM technology may help replace the current time-based maintenance scheme with a condition-based one. The condition-based maintenance scheme relies on the ability to monitor the condition of the system and supply information of damage detection to allow a corrective action to be taken.


2018 ◽  
Vol 7 (3) ◽  
pp. 30 ◽  
Author(s):  
Chiara Bedon ◽  
Enrico Bergamo ◽  
Matteo Izzi ◽  
Salvatore Noè

In recent years, thanks to the simple and yet efficient design, Micro Electro-Mechanical Systems (MEMS) accelerometers have proven to offer a suitable solution for Structural Health Monitoring (SHM) in civil engineering applications. Such devices are typically characterised by high portability and durability, as well as limited cost, hence resulting in ideal tools for applications in buildings and infrastructure. In this paper, original self-made MEMS sensor prototypes are presented and validated on the basis of preliminary laboratory tests (shaking table experiments and noise level measurements). Based on the well promising preliminary outcomes, their possible application for the dynamic identification of existing, full-scale structural assemblies is then discussed, giving evidence of their potential via comparative calculations towards past literature results, inclusive of both on-site, Experimental Modal Analysis (EMA) and Finite Element Analytical estimations (FEA). The full-scale experimental validation of MEMS accelerometers, in particular, is performed using, as a case study, the cable-stayed bridge in Pietratagliata (Italy). Dynamic results summarised in the paper demonstrate the high capability of MEMS accelerometers, with evidence of rather stable and reliable predictions, and suggest their feasibility and potential for SHM purposes.


Author(s):  
Mohammad Alshaikh Ali ◽  
Eric C. Nolan ◽  
Steven R. Anton ◽  
Mohsen Safaei

Abstract This work investigates the application of structural health monitoring (SHM) in a dynamic environment with the electromechanical impedance (EMI) method. Classically, the EMI method monitors civil or mechanical structures for damage in static environments. Advances in data acquisition (DAQ) now allow the possibility of rapid damage detection in dynamic environments. An impact-based experimental setup is developed to create a repeatable dynamic event through a collision between a pneumatically actuated striker bar and a static incident bar instrumented with a piezoelectric transducer. The EMI method is employed to detect the change of state at the interface of the two colliding bars. Experimental results prove the pneumatic launching system is capable of repeatable dynamic events, but the duration of contact is only 0.03 ms and the current DAQ system is incapable of detecting the event. A 3D printed programming material interface is placed at the location of impact to increase the duration of contact to approximately 1 ms. An excitation signal is created to continuously sweep a 0.5 ms chirp signal with a frequency bandwidth from 60–70 kHz (previously identified damage sensitive frequency bandwidth from static testing) for 7.5 seconds. Results indicate that due to the sampling rate and sweep time of the excitation signal, the frequency resolution is not adequate to properly assess if the impact is detected. Improvements in the DAQ hardware must be considered for future work.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yajie Sun ◽  
Feihong Gu ◽  
Sai Ji ◽  
Lihua Wang

In order to ensure the safety of composite components, structural health monitoring is needed to detect structural performance in real-time at the early stage of damage occurred. This is difficult to detect complex components with single sensor detection technology, so that ultrasonic phased array technology using multisensor detection will be selected. Ultrasonic phased array technology can scan the structure in all directions and angles without moving or less moving the probe and becomes the first choice of structural health monitoring. However, a large amount of data will be generated when using ultrasonic phased array with Nyquist sampling theorem for structural health monitoring and is difficult to storage, transmission, and processing. Besides, traditional Nyquist sampling cannot satisfy the sampling of large amounts of data without distortion, so a more efficient acquisition technique must be chosen. Compressive sensing theory can ensure that if the signal is sparse, it can be sampled in low sampling rate which is much less than two times of the sampling rate as defined by Nyquist sampling theorem for a large number of data and reconstructed in high probability. Then, the experiment result indicated that the orthogonal matching pursuit algorithm can reconstruct the signal completely and accurately.


2011 ◽  
Vol 308-310 ◽  
pp. 2478-2481
Author(s):  
Xing Xing Li ◽  
Ben Niu Zhang ◽  
Zhi Xiang Zhou ◽  
Lian Tang

Structural health monitoring is a promising way for evaluating the integrity and safety of large-scale bridges, and crack monitoring is thought to be a challenging problem in this field. An improved design based on smart film for monitoring crack width of concrete bridges is proposed in this paper. Experiments are also implemented to verify the effectiveness of this design.


Author(s):  
Ghassan M. Atmeh ◽  
Zeaid Hasan

The current study presents the problem of state and parameter estimation of flexible structures under a Kalman filtering framework. Inspired from a previous publication by the authors, the work presented here tackles the issue of practically acquiring the natural frequency of a flexible structure for structural health monitoring purposes. The Kalman filter theory is introduced where the linear Kalman filter and the unscnted Kalman filter algorithms are explained. An example of estimating the dynamics of a simply supported beam, modeled using the finite element method, is first discussed for the purpose of establishing the effectiveness of the Kalman filtering approach in dynamic structural systems. A more complicated system consisting of a flexible appendage attached at one end to a rotating hub is then introduced. The system dynamics are modeled using the finite element method, which is incorporated in a computer simulation where the Kalman filter is applied to estimate not only the appendage dynamics, but its parameters as well; specifically its natural frequency. The purpose of the work is to establish a practical method of acquiring the natural frequency for a flexible structure to accommodate a structural health monitoring system. Results show that the Kalman filter is a viable option for estimating the natural frequency of flexible structure.


Author(s):  
Babar Nasim Khan Raja ◽  
Saeed Miramini ◽  
Colin Duffield ◽  
Shilun Chen ◽  
Lihai Zhang

The mechanical properties of bridge bearings gradually deteriorate over time resulting from daily traffic loading and harsh environmental conditions. However, structural health monitoring of in-service bridge bearings is rather challenging. This study presents a bridge bearing condition assessment framework which integrates the vibration data from a non-contact interferometric radar (i.e. IBIS-S) and a simplified analytical model. Using two existing concrete bridges in Australia as a case study, it demonstrates that the developed framework has the capability of detecting the structural condition of the bridge bearings in real-time. In addition, the results from a series of parametric studies show that the effectiveness of the developed framework is largely determined by the stiffness ratio between bridge bearing and girder ([Formula: see text], i.e. the structural condition of the bearings can only be effectively captured when the value of [Formula: see text] ranges from 1/100 and 100.


Sign in / Sign up

Export Citation Format

Share Document