scholarly journals Pharmacodynamic Markers for Choline Kinase Down-regulation in Breast Cancer Cells

Neoplasia ◽  
2009 ◽  
Vol 11 (5) ◽  
pp. 477-484 ◽  
Author(s):  
Sridhar Nimmagadda ◽  
Kristine Glunde ◽  
Martin G. Pomper ◽  
Zaver M. Bhujwalla
2007 ◽  
Vol 67 (23) ◽  
pp. 11284-11290 ◽  
Author(s):  
Noriko Mori ◽  
Kristine Glunde ◽  
Tomoyo Takagi ◽  
Venu Raman ◽  
Zaver M. Bhujwalla

2021 ◽  
pp. 096032712110214
Author(s):  
Yansong Chen ◽  
Ye Tian ◽  
Gongsheng Jin ◽  
Zhen Cui ◽  
Wei Guo ◽  
...  

This study aimed to investigate the anti-cancer effect of lobetyolin on breast cancer cells. Lobetyolin was incubated with MDA-MB-231 and MDA-MB-468 breast cancer cells for 24 h. Glucose uptake and the mRNA expression of GLUT4 ( SLC2A4), HK2 and PKM2 were detected to assess the effect of lobetyolin on glucose metabolism. Glutamine uptake and the mRNA expression of ASCT2 ( SLC1A5), GLS1, GDH and GLUL were measured to assess the effect of lobetyolin on glutamine metabolism. Annexin V/PI double staining and Hoechst 33342 staining were used to investigate the effect of lobetyolin on cell apoptosis. Immunoblot was employed to estimate the effect of lobetyolin on the expression of proliferation-related markers and apoptosis-related markers. SLC1A5 knockdown with specific siRNA was performed to study the role of ASCT2 played in the anti-cancer effect of lobetyolin on MDA-MB-231 and MDA-MB-468 breast cancer cells. C-MYC knockdown with specific siRNA was performed to study the role of c-Myc played in lobetyolin-induced ASCT2 down-regulation. Myr-AKT overexpression was performed to investigate the role of AKT/GSK3β signaling played in lobetyolin-induced down-regulation of c-Myc and ASCT2. The results showed that lobetyolin inhibited the proliferation of both MDA-MB-231 and MDA-MB-468 breast cancer cells. Lobetyolin disrupted glutamine uptake via down-regulating ASCT2. SLC1A5 knockdown attenuated the anti-cancer effect of lobetyolin. C-MYC knockdown attenuated lobetyolin-caused down-regulation of ASCT2 and Myr-AKT overexpression reversed lobetyolin-caused down-regulation of both c-Myc and ASCT2. In conclusion, the present work suggested that lobetyolin exerted anti-cancer effect via ASCT2 down-regulation-induced apoptosis in breast cancer cells.


2021 ◽  
Author(s):  
Termeh Shakery ◽  
Fatemeh Safari

Breast cancer (BC) is one of the most causes of cancer-related death among women worldwide. Cancer therapy based on stem cells was considered as a novel and promising platform. In present study, we explored the therapeutic effects of human amniotic mesenchymal stromal cells (hAMSCs) through Pinkbar (planar intestinal-and kidney-specific BAR domain protein), pAKT, and matrix metalloproteinases including MMP2, MMP9 on MDA-MB-231 breast cancer cells. To do so, we employed a co-culture system using 6 well plates transwell with a diameter of 0.4 μm pore sized. After 72h hAMSCs-treated MDA-MB-231 breast cancer cells, the expression of Epidermal growth factor receptor (EGFR), and c-Src (a key mediator in EGFR signaling pathway), Pinkbar, pAKT, MMP2, and MMP9 was analyzed by using quantitative real time PCR (qRT-PCR) and western blot methods. Based on using 2D and 3D cell culture models, the significant reduction of tumor cell growth and motility through down regulation of EGFR, c-Src, Pinkbar, pAKT, MMP2, and MMP9 in MDA-MB-231 breast cancer cells was shown. Also, the induction of cellular apoptosis also found. Our finding indicates that the hAMSCS secretome has therapeutic effects on cancer cells. To identify the details of the molecular mechanisms, more experiments will be required.


2007 ◽  
Vol 170 (6) ◽  
pp. 2112-2121 ◽  
Author(s):  
Khalid Sossey-Alaoui ◽  
Alfiya Safina ◽  
Xiurong Li ◽  
Mary M. Vaughan ◽  
David G. Hicks ◽  
...  

2016 ◽  
Vol 151 ◽  
pp. 1027-1033 ◽  
Author(s):  
Zhiyong Luo ◽  
Xiaopeng Hu ◽  
Hua Xiong ◽  
Hong Qiu ◽  
Xianglin Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document