scholarly journals Simulation-Based Approach to Efficient Commonsense Reasoning in Very Large Knowledge Bases

Author(s):  
Abhishek Sharma ◽  
Keith M. Goolsbey

Cognitive systems must reason with large bodies of general knowledge to perform complex tasks in the real world. However, due to the intractability of reasoning in large, expressive knowledge bases (KBs), many AI systems have limited reasoning capabilities. Successful cognitive systems have used a variety of machine learning and axiom selection methods to improve inference. In this paper, we describe a search heuristic that uses a Monte-Carlo simulation technique to choose inference steps. We test the efficacy of this approach on a very large and expressive KB, Cyc. Experimental results on hundreds of queries show that this method is highly effective in reducing inference time and improving question-answering (Q/A) performance.

10.29007/lt5p ◽  
2019 ◽  
Author(s):  
Sophie Siebert ◽  
Frieder Stolzenburg

Commonsense reasoning is an everyday task that is intuitive for humans but hard to implement for computers. It requires large knowledge bases to get the required data from, although this data is still incomplete or even inconsistent. While machine learning algorithms perform rather well on these tasks, the reasoning process remains a black box. To close this gap, our system CoRg aims to build an explainable and well-performing system, which consists of both an explainable deductive derivation process and a machine learning part. We conduct our experiments on the Copa question-answering benchmark using the ontologies WordNet, Adimen-SUMO, and ConceptNet. The knowledge is fed into the theorem prover Hyper and in the end the conducted models will be analyzed using machine learning algorithms, to derive the most probable answer.


Author(s):  
Tanel Tammet ◽  
Dirk Draheim ◽  
Priit Järv

AbstractCommonsense reasoning has long been considered one of the holy grails of artificial intelligence. Our goal is to develop a logic-based component for hybrid – machine learning plus logic – commonsense question answering systems. A critical feature for the component is estimating the confidence in the statements derived from knowledge bases containing uncertain contrary and supporting evidence obtained from different sources. Instead of computing exact probabilities or designing a new calculus we focus on extending the methods and algorithms used by the existing automated reasoners for full classical first-order logic. The paper presents the CONFER framework and implementation for confidence estimation of derived answers.


2021 ◽  
pp. 1-12
Author(s):  
Melesio Crespo-Sanchez ◽  
Ivan Lopez-Arevalo ◽  
Edwin Aldana-Bobadilla ◽  
Alejandro Molina-Villegas

In the last few years, text analysis has grown as a keystone in several domains for solving many real-world problems, such as machine translation, spam detection, and question answering, to mention a few. Many of these tasks can be approached by means of machine learning algorithms. Most of these algorithms take as input a transformation of the text in the form of feature vectors containing an abstraction of the content. Most of recent vector representations focus on the semantic component of text, however, we consider that also taking into account the lexical and syntactic components the abstraction of content could be beneficial for learning tasks. In this work, we propose a content spectral-based text representation applicable to machine learning algorithms for text analysis. This representation integrates the spectra from the lexical, syntactic, and semantic components of text producing an abstract image, which can also be treated by both, text and image learning algorithms. These components came from feature vectors of text. For demonstrating the goodness of our proposal, this was tested on text classification and complexity reading score prediction tasks obtaining promising results.


AI Magazine ◽  
2015 ◽  
Vol 36 (1) ◽  
pp. 75-86 ◽  
Author(s):  
Jennifer Sleeman ◽  
Tim Finin ◽  
Anupam Joshi

We describe an approach for identifying fine-grained entity types in heterogeneous data graphs that is effective for unstructured data or when the underlying ontologies or semantic schemas are unknown. Identifying fine-grained entity types, rather than a few high-level types, supports coreference resolution in heterogeneous graphs by reducing the number of possible coreference relations that must be considered. Big data problems that involve integrating data from multiple sources can benefit from our approach when the datas ontologies are unknown, inaccessible or semantically trivial. For such cases, we use supervised machine learning to map entity attributes and relations to a known set of attributes and relations from appropriate background knowledge bases to predict instance entity types. We evaluated this approach in experiments on data from DBpedia, Freebase, and Arnetminer using DBpedia as the background knowledge base.


2018 ◽  
Vol 18 (3-4) ◽  
pp. 623-637 ◽  
Author(s):  
ARINDAM MITRA ◽  
CHITTA BARAL

AbstractOver the years the Artificial Intelligence (AI) community has produced several datasets which have given the machine learning algorithms the opportunity to learn various skills across various domains. However, a subclass of these machine learning algorithms that aimed at learning logic programs, namely the Inductive Logic Programming algorithms, have often failed at the task due to the vastness of these datasets. This has impacted the usability of knowledge representation and reasoning techniques in the development of AI systems. In this research, we try to address this scalability issue for the algorithms that learn answer set programs. We present a sound and complete algorithm which takes the input in a slightly different manner and performs an efficient and more user controlled search for a solution. We show via experiments that our algorithm can learn from two popular datasets from machine learning community, namely bAbl (a question answering dataset) and MNIST (a dataset for handwritten digit recognition), which to the best of our knowledge was not previously possible. The system is publicly available athttps://goo.gl/KdWAcV.


Sign in / Sign up

Export Citation Format

Share Document