scholarly journals End-to-End Safe Reinforcement Learning through Barrier Functions for Safety-Critical Continuous Control Tasks

Author(s):  
Richard Cheng ◽  
Gábor Orosz ◽  
Richard M. Murray ◽  
Joel W. Burdick

Reinforcement Learning (RL) algorithms have found limited success beyond simulated applications, and one main reason is the absence of safety guarantees during the learning process. Real world systems would realistically fail or break before an optimal controller can be learned. To address this issue, we propose a controller architecture that combines (1) a model-free RL-based controller with (2) model-based controllers utilizing control barrier functions (CBFs) and (3) online learning of the unknown system dynamics, in order to ensure safety during learning. Our general framework leverages the success of RL algorithms to learn high-performance controllers, while the CBF-based controllers both guarantee safety and guide the learning process by constraining the set of explorable polices. We utilize Gaussian Processes (GPs) to model the system dynamics and its uncertainties. Our novel controller synthesis algorithm, RL-CBF, guarantees safety with high probability during the learning process, regardless of the RL algorithm used, and demonstrates greater policy exploration efficiency. We test our algorithm on (1) control of an inverted pendulum and (2) autonomous carfollowing with wireless vehicle-to-vehicle communication, and show that our algorithm attains much greater sample efficiency in learning than other state-of-the-art algorithms and maintains safety during the entire learning process.

2021 ◽  
Vol 8 ◽  
Author(s):  
Huan Zhao ◽  
Junhua Zhao ◽  
Ting Shu ◽  
Zibin Pan

Buildings account for a large proportion of the total energy consumption in many countries and almost half of the energy consumption is caused by the Heating, Ventilation, and air-conditioning (HVAC) systems. The model predictive control of HVAC is a complex task due to the dynamic property of the system and environment, such as temperature and electricity price. Deep reinforcement learning (DRL) is a model-free method that utilizes the “trial and error” mechanism to learn the optimal policy. However, the learning efficiency and learning cost are the main obstacles of the DRL method to practice. To overcome this problem, the hybrid-model-based DRL method is proposed for the HVAC control problem. Firstly, a specific MDPs is defined by considering the energy cost, temperature violation, and action violation. Then the hybrid-model-based DRL method is proposed, which utilizes both the knowledge-driven model and the data-driven model during the whole learning process. Finally, the protection mechanism and adjusting reward methods are used to further reduce the learning cost. The proposed method is tested in a simulation environment using the Australian Energy Market Operator (AEMO) electricity price data and New South Wales temperature data. Simulation results show that 1) the DRL method can reduce the energy cost while maintaining the temperature satisfactory compared to the short term MPC method; 2) the proposed method improves the learning efficiency and reduces the learning cost during the learning process compared to the model-free method.


2020 ◽  
Vol 34 (04) ◽  
pp. 3316-3323
Author(s):  
Qingpeng Cai ◽  
Ling Pan ◽  
Pingzhong Tang

Reinforcement learning algorithms such as the deep deterministic policy gradient algorithm (DDPG) has been widely used in continuous control tasks. However, the model-free DDPG algorithm suffers from high sample complexity. In this paper we consider the deterministic value gradients to improve the sample efficiency of deep reinforcement learning algorithms. Previous works consider deterministic value gradients with the finite horizon, but it is too myopic compared with infinite horizon. We firstly give a theoretical guarantee of the existence of the value gradients in this infinite setting. Based on this theoretical guarantee, we propose a class of the deterministic value gradient algorithm (DVG) with infinite horizon, and different rollout steps of the analytical gradients by the learned model trade off between the variance of the value gradients and the model bias. Furthermore, to better combine the model-based deterministic value gradient estimators with the model-free deterministic policy gradient estimator, we propose the deterministic value-policy gradient (DVPG) algorithm. We finally conduct extensive experiments comparing DVPG with state-of-the-art methods on several standard continuous control benchmarks. Results demonstrate that DVPG substantially outperforms other baselines.


2021 ◽  
Vol 5 (4) ◽  
pp. 1-24
Author(s):  
Siddharth Mysore ◽  
Bassel Mabsout ◽  
Kate Saenko ◽  
Renato Mancuso

We focus on the problem of reliably training Reinforcement Learning (RL) models (agents) for stable low-level control in embedded systems and test our methods on a high-performance, custom-built quadrotor platform. A common but often under-studied problem in developing RL agents for continuous control is that the control policies developed are not always smooth. This lack of smoothness can be a major problem when learning controllers as it can result in control instability and hardware failure. Issues of noisy control are further accentuated when training RL agents in simulation due to simulators ultimately being imperfect representations of reality—what is known as the reality gap . To combat issues of instability in RL agents, we propose a systematic framework, REinforcement-based transferable Agents through Learning (RE+AL), for designing simulated training environments that preserve the quality of trained agents when transferred to real platforms. RE+AL is an evolution of the Neuroflight infrastructure detailed in technical reports prepared by members of our research group. Neuroflight is a state-of-the-art framework for training RL agents for low-level attitude control. RE+AL improves and completes Neuroflight by solving a number of important limitations that hindered the deployment of Neuroflight to real hardware. We benchmark RE+AL on the NF1 racing quadrotor developed as part of Neuroflight. We demonstrate that RE+AL significantly mitigates the previously observed issues of smoothness in RL agents. Additionally, RE+AL is shown to consistently train agents that are flight capable and with minimal degradation in controller quality upon transfer. RE+AL agents also learn to perform better than a tuned PID controller, with better tracking errors, smoother control, and reduced power consumption. To the best of our knowledge, RE+AL agents are the first RL-based controllers trained in simulation to outperform a well-tuned PID controller on a real-world controls problem that is solvable with classical control.


2020 ◽  
Vol 69 ◽  
pp. 1421-1471
Author(s):  
Aristotelis Lazaridis ◽  
Anestis Fachantidis ◽  
Ioannis Vlahavas

Deep Reinforcement Learning is a topic that has gained a lot of attention recently, due to the unprecedented achievements and remarkable performance of such algorithms in various benchmark tests and environmental setups. The power of such methods comes from the combination of an already established and strong field of Deep Learning, with the unique nature of Reinforcement Learning methods. It is, however, deemed necessary to provide a compact, accurate and comparable view of these methods and their results for the means of gaining valuable technical and practical insights. In this work we gather the essential methods related to Deep Reinforcement Learning, extracting common property structures for three complementary core categories: a) Model-Free, b) Model-Based and c) Modular algorithms. For each category, we present, analyze and compare state-of-the-art Deep Reinforcement Learning algorithms that achieve high performance in various environments and tackle challenging problems in complex and demanding tasks. In order to give a compact and practical overview of their differences, we present comprehensive comparison figures and tables, produced by reported performances of the algorithms under two popular simulation platforms: the Atari Learning Environment and the MuJoCo physics simulation platform. We discuss the key differences of the various kinds of algorithms, indicate their potential and limitations, as well as provide insights to researchers regarding future directions of the field.


2016 ◽  
Vol 04 (01) ◽  
pp. 51-60 ◽  
Author(s):  
Bahare Kiumarsi ◽  
Wei Kang ◽  
Frank L. Lewis

This paper presents a completely model-free [Formula: see text] optimal tracking solution to the control of a general class of nonlinear nonaffine systems in the presence of the input constraints. The proposed method is motivated by nonaffine unmanned aerial vehicle (UAV) system as a real application. First, a general class of nonlinear nonaffine system dynamics is presented as an affine system in terms of a nonlinear function of the control input. It is shown that the optimal control of nonaffine systems may not have an admissible solution if the utility function is not defined properly. Moreover, the boundness of the optimal control input cannot be guaranteed for standard performance functions. A new performance function is defined and used in the [Formula: see text]-gain condition for this class of nonaffine system. This performance function guarantees the existence of an admissible solution (if any exists) and boundness of the control input solution. An off-policy reinforcement learning (RL) is employed to iteratively solve the [Formula: see text] optimal tracking control online using the measured data along the system trajectories. The proposed off-policy RL does not require any knowledge of the system dynamics. Moreover, the disturbance input does not need to be adjustable in a specific manner.


Author(s):  
Ziwei Luo ◽  
Jing Hu ◽  
Xin Wang ◽  
Siwei Lyu ◽  
Bin Kong ◽  
...  

Training a model-free deep reinforcement learning model to solve image-to-image translation is difficult since it involves high-dimensional continuous state and action spaces. In this paper, we draw inspiration from the recent success of the maximum entropy reinforcement learning framework designed for challenging continuous control problems to develop stochastic policies over high dimensional continuous spaces including image representation, generation, and control simultaneously. Central to this method is the Stochastic Actor-Executor-Critic (SAEC) which is an off-policy actor-critic model with an additional executor to generate realistic images. Specifically, the actor focuses on the high-level representation and control policy by a stochastic latent action, as well as explicitly directs the executor to generate low-level actions to manipulate the state. Experiments on several image-to-image translation tasks have demonstrated the effectiveness and robustness of the proposed SAEC when facing high-dimensional continuous space problems.


2021 ◽  
Vol 11 (3) ◽  
pp. 1131
Author(s):  
Liwei Hou ◽  
Hengsheng Wang ◽  
Haoran Zou ◽  
Qun Wang

Autonomous learning of robotic skills seems to be more natural and more practical than engineered skills, analogous to the learning process of human individuals. Policy gradient methods are a type of reinforcement learning technique which have great potential in solving robot skills learning problems. However, policy gradient methods require too many instances of robot online interaction with the environment in order to learn a good policy, which means lower efficiency of the learning process and a higher likelihood of damage to both the robot and the environment. In this paper, we propose a two-phase (imitation phase and practice phase) framework for efficient learning of robot walking skills, in which we pay more attention to the quality of skill learning and sample efficiency at the same time. The training starts with what we call the first stage or the imitation phase of learning, updating the parameters of the policy network in a supervised learning manner. The training set used in the policy network learning is composed of the experienced trajectories output by the iterative linear Gaussian controller. This paper also refers to these trajectories as near-optimal experiences. In the second stage, or the practice phase, the experiences for policy network learning are collected directly from online interactions, and the policy network parameters are updated with model-free reinforcement learning. The experiences from both stages are stored in the weighted replay buffer, and they are arranged in order according to the experience scoring algorithm proposed in this paper. The proposed framework is tested on a biped robot walking task in a MATLAB simulation environment. The results show that the sample efficiency of the proposed framework is much higher than ordinary policy gradient algorithms. The algorithm proposed in this paper achieved the highest cumulative reward, and the robot learned better walking skills autonomously. In addition, the weighted replay buffer method can be made as a general module for other model-free reinforcement learning algorithms. Our framework provides a new way to combine model-based reinforcement learning with model-free reinforcement learning to efficiently update the policy network parameters in the process of robot skills learning.


2018 ◽  
Author(s):  
Neythen J. Treloar ◽  
Alexander J.H. Fedorec ◽  
Brian P. Ingalls ◽  
Chris P. Barnes

AbstractMulti-species microbial communities are widespread in natural ecosystems. When employed for biomanufacturing, engineered synthetic communities have shown increased productivity (in comparison with pure cultures) and allow for the reduction of metabolic load by compartmentalising bioprocesses between multiple sub-populations. Despite these benefits, co-cultures are rarely used in practice because control over the constituent species of an assembled community has proven challenging. Here we demonstrate, in silico, the efficacy of an approach from artificial intelligence – reinforcement learning – in the control of co-cultures within continuous bioreactors. We confirm that feedback via reinforcement learning can be used to maintain populations at target levels, and that model-free performance with bang-bang control can outperform traditional proportional integral controller with continuous control, when faced with infrequent sampling. Further, we demonstrate that a satisfactory control policy can be learned in one twenty-four hour experiment, by running five bioreactors in parallel. Finally, we show that reinforcement learning can directly optimise the output of a co-culture bioprocess. Overall, reinforcement learning is a promising technique for the control of microbial communities.


Author(s):  
Xiaoming Liu ◽  
Zhixiong Xu ◽  
Lei Cao ◽  
Xiliang Chen ◽  
Kai Kang

The balance between exploration and exploitation has always been a core challenge in reinforcement learning. This paper proposes “past-success exploration strategy combined with Softmax action selection”(PSE-Softmax) as an adaptive control method for taking advantage of the characteristics of the online learning process of the agent to adapt exploration parameters dynamically. The proposed strategy is tested on OpenAI Gym with discrete and continuous control tasks, and the experimental results show that PSE-Softmax strategy delivers better performance than deep reinforcement learning algorithms with basic exploration strategies.


Author(s):  
Siyi Li ◽  
Tianbo Liu ◽  
Chi Zhang ◽  
Dit-Yan Yeung ◽  
Shaojie Shen

While deep reinforcement learning (RL) methods have achieved unprecedented successes in a range of challenging problems, their applicability has been mainly limited to simulation or game domains due to the high sample complexity of the trial-and-error learning process. However, real-world robotic applications often need a data-efficient learning process with safety-critical constraints. In this paper, we consider the challenging problem of learning unmanned aerial vehicle (UAV) control for tracking a moving target. To acquire a strategy that combines perception and control, we represent the policy by a convolutional neural network. We develop a hierarchical approach that combines a model-free policy gradient method with a conventional feedback proportional-integral-derivative (PID) controller to enable stable learning without catastrophic failure. The neural network is trained by a combination of supervised learning from raw images and reinforcement learning from games of self-play. We show that the proposed approach can learn a target following policy in a simulator efficiently and the learned behavior can be successfully transferred to the DJI quadrotor platform for real-world UAV control. 


Sign in / Sign up

Export Citation Format

Share Document