scholarly journals A Hierarchical Multi-Task Approach for Learning Embeddings from Semantic Tasks

Author(s):  
Victor Sanh ◽  
Thomas Wolf ◽  
Sebastian Ruder

Much effort has been devoted to evaluate whether multi-task learning can be leveraged to learn rich representations that can be used in various Natural Language Processing (NLP) down-stream applications. However, there is still a lack of understanding of the settings in which multi-task learning has a significant effect. In this work, we introduce a hierarchical model trained in a multi-task learning setup on a set of carefully selected semantic tasks. The model is trained in a hierarchical fashion to introduce an inductive bias by supervising a set of low level tasks at the bottom layers of the model and more complex tasks at the top layers of the model. This model achieves state-of-the-art results on a number of tasks, namely Named Entity Recognition, Entity Mention Detection and Relation Extraction without hand-engineered features or external NLP tools like syntactic parsers. The hierarchical training supervision induces a set of shared semantic representations at lower layers of the model. We show that as we move from the bottom to the top layers of the model, the hidden states of the layers tend to represent more complex semantic information.

2021 ◽  
pp. 1-12
Author(s):  
Yingwen Fu ◽  
Nankai Lin ◽  
Xiaotian Lin ◽  
Shengyi Jiang

Named entity recognition (NER) is fundamental to natural language processing (NLP). Most state-of-the-art researches on NER are based on pre-trained language models (PLMs) or classic neural models. However, these researches are mainly oriented to high-resource languages such as English. While for Indonesian, related resources (both in dataset and technology) are not yet well-developed. Besides, affix is an important word composition for Indonesian language, indicating the essentiality of character and token features for token-wise Indonesian NLP tasks. However, features extracted by currently top-performance models are insufficient. Aiming at Indonesian NER task, in this paper, we build an Indonesian NER dataset (IDNER) comprising over 50 thousand sentences (over 670 thousand tokens) to alleviate the shortage of labeled resources in Indonesian. Furthermore, we construct a hierarchical structured-attention-based model (HSA) for Indonesian NER to extract sequence features from different perspectives. Specifically, we use an enhanced convolutional structure as well as an enhanced attention structure to extract deeper features from characters and tokens. Experimental results show that HSA establishes competitive performance on IDNER and three benchmark datasets.


2021 ◽  
Vol 54 (1) ◽  
pp. 1-39
Author(s):  
Zara Nasar ◽  
Syed Waqar Jaffry ◽  
Muhammad Kamran Malik

With the advent of Web 2.0, there exist many online platforms that result in massive textual-data production. With ever-increasing textual data at hand, it is of immense importance to extract information nuggets from this data. One approach towards effective harnessing of this unstructured textual data could be its transformation into structured text. Hence, this study aims to present an overview of approaches that can be applied to extract key insights from textual data in a structured way. For this, Named Entity Recognition and Relation Extraction are being majorly addressed in this review study. The former deals with identification of named entities, and the latter deals with problem of extracting relation between set of entities. This study covers early approaches as well as the developments made up till now using machine learning models. Survey findings conclude that deep-learning-based hybrid and joint models are currently governing the state-of-the-art. It is also observed that annotated benchmark datasets for various textual-data generators such as Twitter and other social forums are not available. This scarcity of dataset has resulted into relatively less progress in these domains. Additionally, the majority of the state-of-the-art techniques are offline and computationally expensive. Last, with increasing focus on deep-learning frameworks, there is need to understand and explain the under-going processes in deep architectures.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 79 ◽  
Author(s):  
Xiaoyu Han ◽  
Yue Zhang ◽  
Wenkai Zhang ◽  
Tinglei Huang

Relation extraction is a vital task in natural language processing. It aims to identify the relationship between two specified entities in a sentence. Besides information contained in the sentence, additional information about the entities is verified to be helpful in relation extraction. Additional information such as entity type getting by NER (Named Entity Recognition) and description provided by knowledge base both have their limitations. Nevertheless, there exists another way to provide additional information which can overcome these limitations in Chinese relation extraction. As Chinese characters usually have explicit meanings and can carry more information than English letters. We suggest that characters that constitute the entities can provide additional information which is helpful for the relation extraction task, especially in large scale datasets. This assumption has never been verified before. The main obstacle is the lack of large-scale Chinese relation datasets. In this paper, first, we generate a large scale Chinese relation extraction dataset based on a Chinese encyclopedia. Second, we propose an attention-based model using the characters that compose the entities. The result on the generated dataset shows that these characters can provide useful information for the Chinese relation extraction task. By using this information, the attention mechanism we used can recognize the crucial part of the sentence that can express the relation. The proposed model outperforms other baseline models on our Chinese relation extraction dataset.


2020 ◽  
Vol 36 (15) ◽  
pp. 4331-4338
Author(s):  
Mei Zuo ◽  
Yang Zhang

Abstract Motivation Named entity recognition is a critical and fundamental task for biomedical text mining. Recently, researchers have focused on exploiting deep neural networks for biomedical named entity recognition (Bio-NER). The performance of deep neural networks on a single dataset mostly depends on data quality and quantity while high-quality data tends to be limited in size. To alleviate task-specific data limitation, some studies explored the multi-task learning (MTL) for Bio-NER and achieved state-of-the-art performance. However, these MTL methods did not make full use of information from various datasets of Bio-NER. The performance of state-of-the-art MTL method was significantly limited by the number of training datasets. Results We propose two dataset-aware MTL approaches for Bio-NER which jointly train all models for numerous Bio-NER datasets, thus each of these models could discriminatively exploit information from all of related training datasets. Both of our two approaches achieve substantially better performance compared with the state-of-the-art MTL method on 14 out of 15 Bio-NER datasets. Furthermore, we implemented our approaches by incorporating Bio-NER and biomedical part-of-speech (POS) tagging datasets. The results verify Bio-NER and POS can significantly enhance one another. Availability and implementation Our source code is available at https://github.com/zmmzGitHub/MTL-BC-LBC-BioNER and all datasets are publicly available at https://github.com/cambridgeltl/MTL-Bioinformatics-2016. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 10 (18) ◽  
pp. 6429
Author(s):  
SungMin Yang ◽  
SoYeop Yoo ◽  
OkRan Jeong

Along with studies on artificial intelligence technology, research is also being carried out actively in the field of natural language processing to understand and process people’s language, in other words, natural language. For computers to learn on their own, the skill of understanding natural language is very important. There are a wide variety of tasks involved in the field of natural language processing, but we would like to focus on the named entity registration and relation extraction task, which is considered to be the most important in understanding sentences. We propose DeNERT-KG, a model that can extract subject, object, and relationships, to grasp the meaning inherent in a sentence. Based on the BERT language model and Deep Q-Network, the named entity recognition (NER) model for extracting subject and object is established, and a knowledge graph is applied for relation extraction. Using the DeNERT-KG model, it is possible to extract the subject, type of subject, object, type of object, and relationship from a sentence, and verify this model through experiments.


2020 ◽  
Vol 34 (05) ◽  
pp. 9090-9097
Author(s):  
Niels Van der Heijden ◽  
Samira Abnar ◽  
Ekaterina Shutova

The lack of annotated data in many languages is a well-known challenge within the field of multilingual natural language processing (NLP). Therefore, many recent studies focus on zero-shot transfer learning and joint training across languages to overcome data scarcity for low-resource languages. In this work we (i) perform a comprehensive comparison of state-of-the-art multilingual word and sentence encoders on the tasks of named entity recognition (NER) and part of speech (POS) tagging; and (ii) propose a new method for creating multilingual contextualized word embeddings, compare it to multiple baselines and show that it performs at or above state-of-the-art level in zero-shot transfer settings. Finally, we show that our method allows for better knowledge sharing across languages in a joint training setting.


2021 ◽  
Author(s):  
Christoph Brandl ◽  
Jens Albrecht ◽  
Renato Budinich

The task of relation extraction aims at classifying the semantic relations between entities in a text. When coupled with named-entity recognition these can be used as the building blocks for an information extraction procedure that results in the construction of a Knowledge Graph. While many NLP libraries support named-entity recognition, there is no off-the-shelf solution for relation extraction. In this paper, we evaluate and compare several state-of-the-art approaches on a subset of the FewRel data set as well as a manually annotated corpus. The custom corpus contains six relations from the area of market research and is available for public use. Our approach provides guidance for the selection of models and training data for relation extraction in realworld projects.


2021 ◽  
Vol 22 (S1) ◽  
Author(s):  
Cong Sun ◽  
Zhihao Yang ◽  
Lei Wang ◽  
Yin Zhang ◽  
Hongfei Lin ◽  
...  

Abstract Background The recognition of pharmacological substances, compounds and proteins is essential for biomedical relation extraction, knowledge graph construction, drug discovery, as well as medical question answering. Although considerable efforts have been made to recognize biomedical entities in English texts, to date, only few limited attempts were made to recognize them from biomedical texts in other languages. PharmaCoNER is a named entity recognition challenge to recognize pharmacological entities from Spanish texts. Because there are currently abundant resources in the field of natural language processing, how to leverage these resources to the PharmaCoNER challenge is a meaningful study. Methods Inspired by the success of deep learning with language models, we compare and explore various representative BERT models to promote the development of the PharmaCoNER task. Results The experimental results show that deep learning with language models can effectively improve model performance on the PharmaCoNER dataset. Our method achieves state-of-the-art performance on the PharmaCoNER dataset, with a max F1-score of 92.01%. Conclusion For the BERT models on the PharmaCoNER dataset, biomedical domain knowledge has a greater impact on model performance than the native language (i.e., Spanish). The BERT models can obtain competitive performance by using WordPiece to alleviate the out of vocabulary limitation. The performance on the BERT model can be further improved by constructing a specific vocabulary based on domain knowledge. Moreover, the character case also has a certain impact on model performance.


2020 ◽  
Vol 34 (10) ◽  
pp. 13921-13922
Author(s):  
Chan Hee Song ◽  
Arijit Sehanobish

Most Named Entity Recognition (NER) systems use additional features like part-of-speech (POS) tags, shallow parsing, gazetteers, etc. Adding these external features to NER systems have been shown to have a positive impact. However, creating gazetteers or taggers can take a lot of time and may require extensive data cleaning. In this work instead of using these traditional features we use lexicographic features of Chinese characters. Chinese characters are composed of graphical components called radicals and these components often have some semantic indicators. We propose CNN based models that incorporate this semantic information and use them for NER. Our models show an improvement over the baseline BERT-BiLSTM-CRF model. We present one of the first studies on Chinese OntoNotes v5.0 and show an improvement of + .64 F1 score over the baseline. We present a state-of-the-art (SOTA) F1 score of 71.81 on the Weibo dataset, show a competitive improvement of + 0.72 over baseline on the ResumeNER dataset, and a SOTA F1 score of 96.49 on the MSRA dataset.


2021 ◽  
Author(s):  
Lisa Langnickel ◽  
Juliane Fluck

Intense research has been done in the area of biomedical natural language processing. Since the breakthrough of transfer learning-based methods, BERT models are used in a variety of biomedical and clinical applications. For the available data sets, these models show excellent results - partly exceeding the inter-annotator agreements. However, biomedical named entity recognition applied on COVID-19 preprints shows a performance drop compared to the results on available test data. The question arises how well trained models are able to predict on completely new data, i.e. to generalize. Based on the example of disease named entity recognition, we investigate the robustness of different machine learning-based methods - thereof transfer learning - and show that current state-of-the-art methods work well for a given training and the corresponding test set but experience a significant lack of generalization when applying to new data. We therefore argue that there is a need for larger annotated data sets for training and testing.


Sign in / Sign up

Export Citation Format

Share Document