scholarly journals SSAH: Semi-Supervised Adversarial Deep Hashing with Self-Paced Hard Sample Generation

2020 ◽  
Vol 34 (07) ◽  
pp. 11157-11164
Author(s):  
Sheng Jin ◽  
Shangchen Zhou ◽  
Yao Liu ◽  
Chao Chen ◽  
Xiaoshuai Sun ◽  
...  

Deep hashing methods have been proved to be effective and efficient for large-scale Web media search. The success of these data-driven methods largely depends on collecting sufficient labeled data, which is usually a crucial limitation in practical cases. The current solutions to this issue utilize Generative Adversarial Network (GAN) to augment data in semi-supervised learning. However, existing GAN-based methods treat image generations and hashing learning as two isolated processes, leading to generation ineffectiveness. Besides, most works fail to exploit the semantic information in unlabeled data. In this paper, we propose a novel Semi-supervised Self-pace Adversarial Hashing method, named SSAH to solve the above problems in a unified framework. The SSAH method consists of an adversarial network (A-Net) and a hashing network (H-Net). To improve the quality of generative images, first, the A-Net learns hard samples with multi-scale occlusions and multi-angle rotated deformations which compete against the learning of accurate hashing codes. Second, we design a novel self-paced hard generation policy to gradually increase the hashing difficulty of generated samples. To make use of the semantic information in unlabeled ones, we propose a semi-supervised consistent loss. The experimental results show that our method can significantly improve state-of-the-art models on both the widely-used hashing datasets and fine-grained datasets.

Author(s):  
Jie Lin ◽  
Zechao Li ◽  
Jinhui Tang

With the explosive growth of images containing faces, scalable face image retrieval has attracted increasing attention. Due to the amazing effectiveness, deep hashing has become a popular hashing method recently. In this work, we propose a new Discriminative Deep Hashing (DDH) network to learn discriminative and compact hash codes for large-scale face image retrieval. The proposed network incorporates the end-to-end learning, the divide-and-encode module and the desired discrete code learning into a unified framework. Specifically, a network with a stack of convolution-pooling layers is proposed to extract multi-scale and robust features by merging the outputs of the third max pooling layer and the fourth convolutional layer. To reduce the redundancy among hash codes and the network parameters simultaneously, a divide-and-encode module to generate compact hash codes. Moreover, a loss function is introduced to minimize the prediction errors of the learned hash codes, which can lead to discriminative hash codes. Extensive experiments on two datasets demonstrate that the proposed method achieves superior performance compared with some state-of-the-art hashing methods.


AI ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 600-620
Author(s):  
Gabriele Accarino ◽  
Marco Chiarelli ◽  
Francesco Immorlano ◽  
Valeria Aloisi ◽  
Andrea Gatto ◽  
...  

One of the most important open challenges in climate science is downscaling. It is a procedure that allows making predictions at local scales, starting from climatic field information available at large scale. Recent advances in deep learning provide new insights and modeling solutions to tackle downscaling-related tasks by automatically learning the coarse-to-fine grained resolution mapping. In particular, deep learning models designed for super-resolution problems in computer vision can be exploited because of the similarity between images and climatic fields maps. For this reason, a new architecture tailored for statistical downscaling (SD), named MSG-GAN-SD, has been developed, allowing interpretability and good stability during training, due to multi-scale gradient information. The proposed architecture, based on a Generative Adversarial Network (GAN), was applied to downscale ERA-Interim 2-m temperature fields, from 83.25 to 13.87 km resolution, covering the EURO-CORDEX domain within the 1979–2018 period. The training process involves seasonal and monthly dataset arrangements, in addition to different training strategies, leading to several models. Furthermore, a model selection framework is introduced in order to mathematically select the best models during the training. The selected models were then tested on the 2015–2018 period using several metrics to identify the best training strategy and dataset arrangement, which finally produced several evaluation maps. This work is the first attempt to use the MSG-GAN architecture for statistical downscaling. The achieved results demonstrate that the models trained on seasonal datasets performed better than those trained on monthly datasets. This study presents an accurate and cost-effective solution that is able to perform downscaling of 2 m temperature climatic maps.


2021 ◽  
Vol 13 (7) ◽  
pp. 1327
Author(s):  
Ling Tian ◽  
Yu Cao ◽  
Bokun He ◽  
Yifan Zhang ◽  
Chu He ◽  
...  

As the application scenarios of remote sensing imagery (RSI) become richer, the task of ship detection from an overhead perspective is of great significance. Compared with traditional methods, the use of deep learning ideas has more prospects. However, the Convolutional Neural Network (CNN) has poor resistance to sample differences in detection tasks, and the huge differences in the image environment, background, and quality of RSIs affect the performance for target detection tasks; on the other hand, upsampling or pooling operations result in the loss of detailed information in the features, and the CNN with outstanding results are often accompanied by a high computation and a large amount of memory storage. Considering the characteristics of ship targets in RSIs, this study proposes a detection framework combining an image enhancement module with a dense feature reuse module: (1) drawing on the ideas of the generative adversarial network (GAN), we designed an image enhancement module driven by object characteristics, which improves the quality of the ship target in the images while augmenting the training set; (2) the intensive feature extraction module was designed to integrate low-level location information and high-level semantic information of different resolutions while minimizing the computation, which can improve the efficiency of feature reuse in the network; (3) we introduced the receptive field expansion module to obtain a wider range of deep semantic information and enhance the ability to extract features of targets were at different sizes. Experiments were carried out on two types of ship datasets, optical RSI and Synthetic Aperture Radar (SAR) images. The proposed framework was implemented on classic detection networks such as You Only Look Once (YOLO) and Mask-RCNN. The experimental results verify the effectiveness of the proposed method.


2021 ◽  
Vol 12 (5) ◽  
pp. 1-18
Author(s):  
Min Wang ◽  
Congyan Lang ◽  
Liqian Liang ◽  
Songhe Feng ◽  
Tao Wang ◽  
...  

Semantic image synthesis is a new rising and challenging vision problem accompanied by the recent promising advances in generative adversarial networks. The existing semantic image synthesis methods only consider the global information provided by the semantic segmentation mask, such as class label, global layout, and location, so the generative models cannot capture the rich local fine-grained information of the images (e.g., object structure, contour, and texture). To address this issue, we adopt a multi-scale feature fusion algorithm to refine the generated images by learning the fine-grained information of the local objects. We propose OA-GAN, a novel object-attention generative adversarial network that allows attention-driven, multi-fusion refinement for fine-grained semantic image synthesis. Specifically, the proposed model first generates multi-scale global image features and local object features, respectively, then the local object features are fused into the global image features to improve the correlation between the local and the global. In the process of feature fusion, the global image features and the local object features are fused through the channel-spatial-wise fusion block to learn ‘what’ and ‘where’ to attend in the channel and spatial axes, respectively. The fused features are used to construct correlation filters to obtain feature response maps to determine the locations, contours, and textures of the objects. Extensive quantitative and qualitative experiments on COCO-Stuff, ADE20K and Cityscapes datasets demonstrate that our OA-GAN significantly outperforms the state-of-the-art methods.


Optik ◽  
2021 ◽  
Vol 227 ◽  
pp. 166060
Author(s):  
Yangdi Hu ◽  
Zhengdong Cheng ◽  
Xiaochun Fan ◽  
Zhenyu Liang ◽  
Xiang Zhai

Proceedings ◽  
2021 ◽  
Vol 77 (1) ◽  
pp. 17
Author(s):  
Andrea Giussani

In the last decade, advances in statistical modeling and computer science have boosted the production of machine-produced contents in different fields: from language to image generation, the quality of the generated outputs is remarkably high, sometimes better than those produced by a human being. Modern technological advances such as OpenAI’s GPT-2 (and recently GPT-3) permit automated systems to dramatically alter reality with synthetic outputs so that humans are not able to distinguish the real copy from its counteracts. An example is given by an article entirely written by GPT-2, but many other examples exist. In the field of computer vision, Nvidia’s Generative Adversarial Network, commonly known as StyleGAN (Karras et al. 2018), has become the de facto reference point for the production of a huge amount of fake human face portraits; additionally, recent algorithms were developed to create both musical scores and mathematical formulas. This presentation aims to stimulate participants on the state-of-the-art results in this field: we will cover both GANs and language modeling with recent applications. The novelty here is that we apply a transformer-based machine learning technique, namely RoBerta (Liu et al. 2019), to the detection of human-produced versus machine-produced text concerning fake news detection. RoBerta is a recent algorithm that is based on the well-known Bidirectional Encoder Representations from Transformers algorithm, known as BERT (Devlin et al. 2018); this is a bi-directional transformer used for natural language processing developed by Google and pre-trained over a huge amount of unlabeled textual data to learn embeddings. We will then use these representations as an input of our classifier to detect real vs. machine-produced text. The application is demonstrated in the presentation.


Author(s):  
Khaled ELKarazle ◽  
Valliappan Raman ◽  
Patrick Then

Age estimation models can be employed in many applications, including soft biometrics, content access control, targeted advertising, and many more. However, as some facial images are taken in unrestrained conditions, the quality relegates, which results in the loss of several essential ageing features. This study investigates how introducing a new layer of data processing based on a super-resolution generative adversarial network (SRGAN) model can influence the accuracy of age estimation by enhancing the quality of both the training and testing samples. Additionally, we introduce a novel convolutional neural network (CNN) classifier to distinguish between several age classes. We train one of our classifiers on a reconstructed version of the original dataset and compare its performance with an identical classifier trained on the original version of the same dataset. Our findings reveal that the classifier which trains on the reconstructed dataset produces better classification accuracy, opening the door for more research into building data-centric machine learning systems.


Sign in / Sign up

Export Citation Format

Share Document