scholarly journals Random Erasing Data Augmentation

2020 ◽  
Vol 34 (07) ◽  
pp. 13001-13008 ◽  
Author(s):  
Zhun Zhong ◽  
Liang Zheng ◽  
Guoliang Kang ◽  
Shaozi Li ◽  
Yi Yang

In this paper, we introduce Random Erasing, a new data augmentation method for training the convolutional neural network (CNN). In training, Random Erasing randomly selects a rectangle region in an image and erases its pixels with random values. In this process, training images with various levels of occlusion are generated, which reduces the risk of over-fitting and makes the model robust to occlusion. Random Erasing is parameter learning free, easy to implement, and can be integrated with most of the CNN-based recognition models. Albeit simple, Random Erasing is complementary to commonly used data augmentation techniques such as random cropping and flipping, and yields consistent improvement over strong baselines in image classification, object detection and person re-identification. Code is available at: https://github.com/zhunzhong07/Random-Erasing.

Author(s):  
Hongguo Su ◽  
Mingyuan Zhang ◽  
Shengyuan Li ◽  
Xuefeng Zhao

In the last couple of years, advancements in the deep learning, especially in convolutional neural networks, proved to be a boon for the image classification and recognition tasks. One of the important practical applications of object detection and image classification can be for security enhancement. If dangerous objects or scenes can be identified automatically, then a lot of accidents can be prevented. For this purpose, in this paper we made use of state-of-the-art implementation of Faster Region-based Convolutional Neural Network (Faster R-CNN) based on the monitoring video of hoisting sites to train a model to detect the dangerous object and the worker. By extracting the locations of them, object-human interactions during hoisting, mainly for changes in their spatial location relationship, can be understood whereby estimating whether the scene is safe or dangerous. Experimental results showed that the pre-trained model achieved good performance with a high mean average precision of 97.66% on object detection and the proposed method fulfilled the goal of dangerous scenes recognition perfectly.


2020 ◽  
Vol 121 ◽  
pp. 103767 ◽  
Author(s):  
Shunjiro Noguchi ◽  
Mizuho Nishio ◽  
Masahiro Yakami ◽  
Keita Nakagomi ◽  
Kaori Togashi

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Faisal Saeed ◽  
Muhammad Jamal Ahmed ◽  
Malik Junaid Gul ◽  
Kim Jeong Hong ◽  
Anand Paul ◽  
...  

AbstractWith the increasing pace in the industrial sector, the need for a smart environment is also increasing and the production of industrial products in terms of quality always matters. There is a strong burden on the industrial environment to continue to reduce impulsive downtime, concert deprivation, and safety risks, which needs an efficient solution to detect and improve potential obligations as soon as possible. The systems working in industrial environments for generating industrial products are very fast and generate products rapidly, sometimes leading to faulty products. Therefore, this problem needs to be solved efficiently. Considering this problem in terms of faulty small-object detection, this study proposed an improved faster regional convolutional neural network-based model to detect the faults in the product images. We introduced a novel data-augmentation method along with a bi-cubic interpolation-based feature amplification method. A center loss is also introduced in the loss function to decrease the inter-class similarity issue. The experimental results show that the proposed improved model achieved better classification accuracy for detecting our small faulty objects. The proposed model performs better than the state-of-the-art methods.


2021 ◽  
Vol 4 (2) ◽  
pp. 286-293
Author(s):  
Asrianda Asrianda ◽  
Hafizh Al Kautsar Aidilof ◽  
Yoga Pangestu

Artificial intelligence (AI) merupakan bidang ilmu pengetahuan yang saat ini menjadi isu yang menarik dan masih diteliti secara luas. Salah satu cabang dari pengembangan AI adalah computer vision yang di dalamnya terdapat topik pembahasan image classification dan object detection. Machine learning dapat dimanfaatkan di dalam bidang computer vision untuk melakukan object detection dan image classification, yaitu dengan menggunakan algoritma Convolutional Neural Network (CNN). CNN banyak digunakan pada penelitian terdahulu karena akurasinya yang tinggi. Pada penelitian ini, CNN digunakan untuk mendeteksi jenis penyakit daun tanaman kelapa sawit, dengan dataset sebanyak 60 gambar, dimana 50 diantaranya merupakan daun dengan 5 jenis penyakit berbeda, yaitu Curvularia sp, Cochliobolus carbonus, Capnodium sp, Drecshlera, dan defisiensi unsur hara. Sedangkan 10 sisanya merupakan gambar daun sehat. Hasilnya, CNN dapat mendeteksi penyakit daun kelapa sawit dengan akurasi yang dihasilkan mencapai 99%.


2019 ◽  
Vol 28 (1) ◽  
pp. 3-12
Author(s):  
Jarosław Kurek ◽  
Joanna Aleksiejuk-Gawron ◽  
Izabella Antoniuk ◽  
Jarosław Górski ◽  
Albina Jegorowa ◽  
...  

This paper presents an improved method for recognizing the drill state on the basis of hole images drilled in a laminated chipboard, using convolutional neural network (CNN) and data augmentation techniques. Three classes were used to describe the drill state: red -- for drill that is worn out and should be replaced, yellow -- for state in which the system should send a warning to the operator, indicating that this element should be checked manually, and green -- denoting the drill that is still in good condition, which allows for further use in the production process. The presented method combines the advantages of transfer learning and data augmentation methods to improve the accuracy of the received evaluations. In contrast to the classical deep learning methods, transfer learning requires much smaller training data sets to achieve acceptable results. At the same time, data augmentation customized for drill wear recognition makes it possible to expand the original dataset and to improve the overall accuracy. The experiments performed have confirmed the suitability of the presented approach to accurate class recognition in the given problem, even while using a small original dataset.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1570
Author(s):  
Andreea Gurita ◽  
Irina Georgiana Mocanu

Image segmentation is an essential step in image analysis that brings meaning to the pixels in the image. Nevertheless, it is also a difficult task due to the lack of a general suited approach to this problem and the use of real-life pictures that can suffer from noise or object obstruction. This paper proposes an architecture for semantic segmentation using a convolutional neural network based on the Xception model, which was previously used for classification. Different experiments were made in order to find the best performances of the model (eg. different resolution and depth of the network and data augmentation techniques were applied). Additionally, the network was improved by adding a deformable convolution module. The proposed architecture obtained a 76.8 mean IoU on the Pascal VOC 2012 dataset and 58.1 on the Cityscapes dataset. It outperforms SegNet and U-Net networks, both networks having considerably more parameters and also a higher inference time.


Sign in / Sign up

Export Citation Format

Share Document