scholarly journals Grounding Language for Transfer in Deep Reinforcement Learning

2018 ◽  
Vol 63 ◽  
pp. 849-874 ◽  
Author(s):  
Karthik Narasimhan ◽  
Regina Barzilay ◽  
Tommi Jaakkola

In this paper, we explore the utilization of natural language to drive transfer for reinforcement learning (RL). Despite the wide-spread application of deep RL techniques, learning generalized policy representations that work across domains remains a challenging problem. We demonstrate that textual descriptions of environments provide a compact intermediate channel to facilitate effective policy transfer. Specifically, by learning to ground the meaning of text to the dynamics of the environment such as transitions and rewards, an autonomous agent can effectively bootstrap policy learning on a new domain given its description. We employ a model-based RL approach consisting of a differentiable planning module, a model-free component and a factorized state representation to effectively use entity descriptions. Our model outperforms prior work on both transfer and multi-task scenarios in a variety of different environments. For instance, we achieve up to 14% and 11.5% absolute improvement over previously existing models in terms of average and initial rewards, respectively.

2021 ◽  
Vol 11 (21) ◽  
pp. 10337
Author(s):  
Junkai Ren ◽  
Yujun Zeng ◽  
Sihang Zhou ◽  
Yichuan Zhang

Scaling end-to-end learning to control robots with vision inputs is a challenging problem in the field of deep reinforcement learning (DRL). While achieving remarkable success in complex sequential tasks, vision-based DRL remains extremely data-inefficient, especially when dealing with high-dimensional pixels inputs. Many recent studies have tried to leverage state representation learning (SRL) to break through such a barrier. Some of them could even help the agent learn from pixels as efficiently as from states. Reproducing existing work, accurately judging the improvements offered by novel methods, and applying these approaches to new tasks are vital for sustaining this progress. However, the demands of these three aspects are seldom straightforward. Without significant criteria and tighter standardization of experimental reporting, it is difficult to determine whether improvements over the previous methods are meaningful. For this reason, we conducted ablation studies on hyperparameters, embedding network architecture, embedded dimension, regularization methods, sample quality and SRL methods to compare and analyze their effects on representation learning and reinforcement learning systematically. Three evaluation metrics are summarized, including five baseline algorithms (including both value-based and policy-based methods) and eight tasks are adopted to avoid the particularity of each experiment setting. We highlight the variability in reported methods and suggest guidelines to make future results in SRL more reproducible and stable based on a wide number of experimental analyses. We aim to spur discussion about how to assure continued progress in the field by minimizing wasted effort stemming from results that are non-reproducible and easily misinterpreted.


2020 ◽  
Author(s):  
Thomas Akam ◽  
Mark Walton

Experiments have implicated dopamine in model-based reinforcement learning (RL). These findings are unexpected as dopamine is thought to encode a reward prediction error (RPE), which is the key teaching signal in model-free RL. Here we examine two possible accounts for dopamine’s involvement in model-based RL: the first that dopamine neurons carry a prediction error used to update a type of predictive state representation called a successor representation, the second that two well established aspects of dopaminergic activity, RPEs and surprise signals, can together explain dopamine’s involvement in model-based RL.


2019 ◽  
Author(s):  
M. Evren Tok ◽  
Duygu Sever

This study investigates the case of Qatar Singapore Regional Training Center for Public Administration.As a tool for this process of policy transfer, the article further evaluates the case of Singapore- Qatar Asia-Middle East Dialogue (AMED) Regional Training Centre for Public Administration (RTCPA) in Doha, Qatar, as a mechanism to foster this policy transferThe study suggests that this evaluation would be a fruitful example in revealing the strengths and weakness of such initiatives and can offer a scheme for insights regarding effective tools of policy learning.


2019 ◽  
Author(s):  
Leor M Hackel ◽  
Jeffrey Jordan Berg ◽  
Björn Lindström ◽  
David Amodio

Do habits play a role in our social impressions? To investigate the contribution of habits to the formation of social attitudes, we examined the roles of model-free and model-based reinforcement learning in social interactions—computations linked in past work to habit and planning, respectively. Participants in this study learned about novel individuals in a sequential reinforcement learning paradigm, choosing financial advisors who led them to high- or low-paying stocks. Results indicated that participants relied on both model-based and model-free learning, such that each independently predicted choice during the learning task and self-reported liking in a post-task assessment. Specifically, participants liked advisors who could provide large future rewards as well as advisors who had provided them with large rewards in the past. Moreover, participants varied in their use of model-based and model-free learning strategies, and this individual difference influenced the way in which learning related to self-reported attitudes: among participants who relied more on model-free learning, model-free social learning related more to post-task attitudes. We discuss implications for attitudes, trait impressions, and social behavior, as well as the role of habits in a memory systems model of social cognition.


Author(s):  
Jun Long ◽  
Yueyi Luo ◽  
Xiaoyu Zhu ◽  
Entao Luo ◽  
Mingfeng Huang

AbstractWith the developing of Internet of Things (IoT) and mobile edge computing (MEC), more and more sensing devices are widely deployed in the smart city. These sensing devices generate various kinds of tasks, which need to be sent to cloud to process. Usually, the sensing devices do not equip with wireless modules, because it is neither economical nor energy saving. Thus, it is a challenging problem to find a way to offload tasks for sensing devices. However, many vehicles are moving around the city, which can communicate with sensing devices in an effective and low-cost way. In this paper, we propose a computation offloading scheme through mobile vehicles in IoT-edge-cloud network. The sensing devices generate tasks and transmit the tasks to vehicles, then the vehicles decide to compute the tasks in the local vehicle, MEC server or cloud center. The computation offloading decision is made based on the utility function of the energy consumption and transmission delay, and the deep reinforcement learning technique is adopted to make decisions. Our proposed method can make full use of the existing infrastructures to implement the task offloading of sensing devices, the experimental results show that our proposed solution can achieve the maximum reward and decrease delay.


2021 ◽  
Author(s):  
Amarildo Likmeta ◽  
Alberto Maria Metelli ◽  
Giorgia Ramponi ◽  
Andrea Tirinzoni ◽  
Matteo Giuliani ◽  
...  

AbstractIn real-world applications, inferring the intentions of expert agents (e.g., human operators) can be fundamental to understand how possibly conflicting objectives are managed, helping to interpret the demonstrated behavior. In this paper, we discuss how inverse reinforcement learning (IRL) can be employed to retrieve the reward function implicitly optimized by expert agents acting in real applications. Scaling IRL to real-world cases has proved challenging as typically only a fixed dataset of demonstrations is available and further interactions with the environment are not allowed. For this reason, we resort to a class of truly batch model-free IRL algorithms and we present three application scenarios: (1) the high-level decision-making problem in the highway driving scenario, and (2) inferring the user preferences in a social network (Twitter), and (3) the management of the water release in the Como Lake. For each of these scenarios, we provide formalization, experiments and a discussion to interpret the obtained results.


2021 ◽  
Vol 298 ◽  
pp. 117164
Author(s):  
Marco Biemann ◽  
Fabian Scheller ◽  
Xiufeng Liu ◽  
Lizhen Huang

Sign in / Sign up

Export Citation Format

Share Document