scholarly journals Subgoaling Techniques for Satisficing and Optimal Numeric Planning

2020 ◽  
Vol 68 ◽  
pp. 691-752
Author(s):  
Enrico Scala ◽  
Patrik Haslum ◽  
Sylvie Thiébaux ◽  
Miquel Ramirez

This paper studies novel subgoaling relaxations for automated planning with propositional and numeric state variables. Subgoaling relaxations address one source of complexity of the planning problem: the requirement to satisfy conditions simultaneously. The core idea is to relax this requirement by recursively decomposing conditions into atomic subgoals that are considered in isolation. Such relaxations are typically used for pruning, or as the basis for computing admissible or inadmissible heuristic estimates to guide optimal or satis_cing heuristic search planners. In the last decade or so, the subgoaling principle has underpinned the design of an abundance of relaxation-based heuristics whose formulations have greatly extended the reach of classical planning. This paper extends subgoaling relaxations to support numeric state variables and numeric conditions. We provide both theoretical and practical results, with the aim of reaching a good trade-o_ between accuracy and computation costs within a heuristic state-space search planner. Our experimental results validate the theoretical assumptions, and indicate that subgoaling substantially improves on the state of the art in optimal and satisficing numeric planning via forward state-space search.

2011 ◽  
Vol 135-136 ◽  
pp. 573-577 ◽  
Author(s):  
Rui Shi Liang ◽  
Min Huang

Increasing interest has been devoted to Planning as Heuristic Search over the years. Intense research has focused on deriving fast and accurate heuristics for domain-independent planning. This paper reports on an extensive survey and analysis of research work related to heuristic derivation techniques for state space search. Survey results reveal that heuristic techniques have been extensively applied in many efficient planners and result in impressive performances. We extend the survey analysis to suggest promising avenues for future research in heuristic derivation and heuristic search techniques.


Author(s):  
Wenbin Li ◽  
Lei Wang ◽  
Jing Huo ◽  
Yinghuan Shi ◽  
Yang Gao ◽  
...  

The core idea of metric-based few-shot image classification is to directly measure the relations between query images and support classes to learn transferable feature embeddings. Previous work mainly focuses on image-level feature representations, which actually cannot effectively estimate a class's distribution due to the scarcity of samples. Some recent work shows that local descriptor based representations can achieve richer representations than image-level based representations. However, such works are still based on a less effective instance-level metric, especially a symmetric metric, to measure the relation between a query image and a support class. Given the natural asymmetric relation between a query image and a support class, we argue that an asymmetric measure is more suitable for metric-based few-shot learning. To that end, we propose a novel Asymmetric Distribution Measure (ADM) network for few-shot learning by calculating a joint local and global asymmetric measure between two multivariate local distributions of a query and a class. Moreover, a task-aware Contrastive Measure Strategy (CMS) is proposed to further enhance the measure function. On popular miniImageNet and tieredImageNet, ADM can achieve the state-of-the-art results, validating our innovative design of asymmetric distribution measures for few-shot learning. The source code can be downloaded from https://github.com/WenbinLee/ADM.git.


Sadhana ◽  
1996 ◽  
Vol 21 (3) ◽  
pp. 263-290
Author(s):  
Pallab Dasgupta ◽  
P P Chakrabarti ◽  
S C Desarkar

2001 ◽  
Vol 14 ◽  
pp. 253-302 ◽  
Author(s):  
J. Hoffmann ◽  
B. Nebel

We describe and evaluate the algorithmic techniques that are used in the FF planning system. Like the HSP system, FF relies on forward state space search, using a heuristic that estimates goal distances by ignoring delete lists. Unlike HSP's heuristic, our method does not assume facts to be independent. We introduce a novel search strategy that combines hill-climbing with systematic search, and we show how other powerful heuristic information can be extracted and used to prune the search space. FF was the most successful automatic planner at the recent AIPS-2000 planning competition. We review the results of the competition, give data for other benchmark domains, and investigate the reasons for the runtime performance of FF compared to HSP.


Author(s):  
Amanda Coles ◽  
Andrew Coles ◽  
J. Christopher Beck

When performing temporal planning as forward state-space search, effective state memoisation is challenging. Whereas in classical planning, two states are equal if they have the same facts and variable values, in temporal planning this is not the case: as the plans that led to the two states are subject to temporal constraints, one might be extendable into at temporally valid plan, while the other might not. In this paper, we present an approach for reducing the state space explosion that arises due to having to keep many copies of the same ‘classically’ equal state – states that are classically equal are aggregated into metastates, and these are separated lazily only in the case of temporal inconsistency. Our evaluation shows that this approach, implemented in OPTIC and compared to existing state-of-the-art memoisation techniques, improves performance across a range of temporal domains.


2020 ◽  
Author(s):  
Ke Shang ◽  
Hisao Ishibuchi

<div> <div> <div> <p>In this paper, a new hypervolume-based evolutionary multi-objective optimization algorithm (EMOA), namely R2HCA-EMOA (R2-based Hypervolume Contribution Approximation EMOA), is proposed for many-objective optimization. The core idea of the algorithm is to use an R2 indicator variant to approximate the hypervolume contribution. The basic framework of the proposed algorithm is the same as SMS- EMOA. In order to make the algorithm computationally efficient, a utility tensor structure is introduced for the calculation of the R2 indicator variant. Moreover, a normalization mechanism is incorporated into R2HCA-EMOA to enhance the performance of the algorithm. Through experimental studies, R2HCA-EMOA is compared with three hypervolume-based EMOAs and several other state-of-the-art EMOAs on 5-, 10- and 15-objective DTLZ, WFG problems and their minus versions. Our results show that R2HCA-EMOA is more efficient than the other hypervolume-based EMOAs, and is superior to all the compared state-of-the-art EMOAs. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Ke Shang

<div> <div> <div> <p>In this paper, a new hypervolume-based evolution- ary multi-objective optimization algorithm (EMOA), namely R2HCA-EMOA (R2-based Hypervolume Contribution Approx- imation EMOA), is proposed for many-objective optimization. The core idea of the algorithm is to use an R2 indicator variant to approximate the hypervolume contribution. The basic framework of the proposed algorithm is the same as SMS- EMOA. In order to make the algorithm computationally efficient, a utility tensor structure is introduced for the calculation of the R2 indicator variant. Moreover, a normalization mechanism is incorporated into R2HCA-EMOA to enhance the performance of the algorithm. Through experimental studies, R2HCA-EMOA is compared with three hypervolume-based EMOAs and several other state-of-the-art EMOAs on 5-, 10- and 15-objective DTLZ, WFG problems and their minus versions. Our results show that R2HCA-EMOA is more efficient than the other hypervolume- based EMOAs, and is superior to all the compared state-of-the- art EMOAs. </p> </div> </div> </div>


Author(s):  
Ziru Xu ◽  
Yunbo Wang ◽  
Mingsheng Long ◽  
Jianmin Wang

Predicting future frames in videos remains an unsolved but challenging problem. Mainstream recurrent models suffer from huge memory usage and computation cost, while convolutional models are unable to effectively capture the temporal dependencies between consecutive video frames. To tackle this problem, we introduce an entirely CNN-based architecture, PredCNN, that models the dependencies between the next frame and the sequential video inputs. Inspired by the core idea of recurrent models that previous states have more transition operations than future states, we design a cascade multiplicative unit (CMU) that provides relatively more operations for previous video frames. This newly proposed unit enables PredCNN to predict future spatiotemporal data without any recurrent chain structures, which eases gradient propagation and enables a fully paralleled optimization. We show that PredCNN outperforms the state-of-the-art recurrent models for video prediction on the standard Moving MNIST dataset and two challenging crowd flow prediction datasets, and achieves a faster training speed and lower memory footprint.


Author(s):  
Ke Shang ◽  
Hisao Ishibuchi

<div> <div> <div> <p>In this paper, a new hypervolume-based evolutionary multi-objective optimization algorithm (EMOA), namely R2HCA-EMOA (R2-based Hypervolume Contribution Approximation EMOA), is proposed for many-objective optimization. The core idea of the algorithm is to use an R2 indicator variant to approximate the hypervolume contribution. The basic framework of the proposed algorithm is the same as SMS- EMOA. In order to make the algorithm computationally efficient, a utility tensor structure is introduced for the calculation of the R2 indicator variant. Moreover, a normalization mechanism is incorporated into R2HCA-EMOA to enhance the performance of the algorithm. Through experimental studies, R2HCA-EMOA is compared with three hypervolume-based EMOAs and several other state-of-the-art EMOAs on 5-, 10- and 15-objective DTLZ, WFG problems and their minus versions. Our results show that R2HCA-EMOA is more efficient than the other hypervolume-based EMOAs, and is superior to all the compared state-of-the-art EMOAs. </p> </div> </div> </div>


Author(s):  
Mingfei Sun ◽  
Xiaojuan Ma

Imitation learning targets deriving a mapping from states to actions, a.k.a. policy, from expert demonstrations. Existing methods for imitation learning typically require any actions in the demonstrations to be fully available, which is hard to ensure in real applications. Though algorithms for learning with unobservable actions have been proposed, they focus solely on state information and over- look the fact that the action sequence could still be partially available and provide useful information for policy deriving. In this paper, we propose a novel algorithm called Action-Guided Adversarial Imitation Learning (AGAIL) that learns a pol- icy from demonstrations with incomplete action sequences, i.e., incomplete demonstrations. The core idea of AGAIL is to separate demonstrations into state and action trajectories, and train a policy with state trajectories while using actions as auxiliary information to guide the training whenever applicable. Built upon the Generative Adversarial Imitation Learning, AGAIL has three components: a generator, a discriminator, and a guide. The generator learns a policy with rewards provided by the discriminator, which tries to distinguish state distributions between demonstrations and samples generated by the policy. The guide provides additional rewards to the generator when demonstrated actions for specific states are available. We com- pare AGAIL to other methods on benchmark tasks and show that AGAIL consistently delivers com- parable performance to the state-of-the-art methods even when the action sequence in demonstrations is only partially available.


Sign in / Sign up

Export Citation Format

Share Document