Weed Control in Glyphosate-Resistant Corn as Affected by Preemergence Herbicide and Timing of Postemergence Herbicide Application

2006 ◽  
Vol 20 (3) ◽  
pp. 564-570 ◽  
Author(s):  
Robert G. Parker ◽  
Alan C. York ◽  
David L. Jordan

Field studies were conducted at three locations during both 2002 and 2003 to evaluate weed control and response of glyphosate-resistant (GR) corn to glyphosate or nicosulfuron plus atrazine applied POST at three application timings with and without alachlor plus atrazine applied PRE. The POST herbicides were applied timely (5- to 9-cm weeds) or applications were delayed 1 or 2 wk. All treatments, except the weedy check, were followed by glyphosate postemergence-directed (PDIR) 4 wk after the timely POST application. Common lambsquarters, common ragweed, Palmer amaranth, prickly sida, and smooth pigweed were controlled at least 94% regardless of PRE or POST treatments. Large crabgrass and fall panicum were controlled at least 96% by glyphosate regardless of PRE herbicide or POST application timing. In contrast, control by nicosulfuron plus atrazine POST in the absence of PRE herbicide decreased as application was delayed. Sicklepod was controlled at least 94% when POST herbicides were applied timely, but control by both POST herbicide treatments decreased with delayed application regardless of PRE herbicide. Tall morningglory was controlled 93% or greater by POST herbicides applied timely. Control by both POST herbicide treatments decreased as application was delayed, with glyphosate being affected more by timing than nicosulfuron plus atrazine. Corn grain yield was similar with glyphosate and nicosulfuron plus atrazine. Yield was unaffected by POST application timing when PRE herbicides were included. Without PRE herbicide, grain yield decreased as POST herbicide application was delayed.

Weed Science ◽  
1991 ◽  
Vol 39 (2) ◽  
pp. 232-237 ◽  
Author(s):  
J. Boyd Carey ◽  
Michael S. Defelice

Field studies were conducted to evaluate the influence of herbicide application timing on weed control in no-till soybean production. Row spacing generally had no effect on weed control. Herbicide treatments containing chlorimuron plus metribuzin applied as many as 45 days prior to planting in 1988 and 1989 controlled broadleaf weeds throughout the growing season. Imazaquin applied 45 and 30 days prior to planting provided poor control of common cocklebur in 1989. Giant foxtail control was inconsistent with all herbicide treatments. Soybean yields subsequent to early preplant herbicide applications were greater than or equal to those in which applications were made at planting when late-season weed control was adequate. Herbicides applied preemergence did not control high densities of common lambsquarters in 1989.


1997 ◽  
Vol 11 (3) ◽  
pp. 602-607 ◽  
Author(s):  
Eric Spandl ◽  
Thomas L. Rabaey ◽  
James J. Kells ◽  
R. Gordon Harvey

Optimal application timing for dicamba–acetamide tank mixes was examined in field studies conducted in Michigan and Wisconsin from 1993 to 1995. Dicamba was tank mixed with alachlor, metolachlor, or SAN 582H and applied at planting, 7 d after planting, and 14 d after planting. Additional dicamba plus alachlor tank mixes applied at all three timings were followed by nicosulfuron postemergence to determine the effects of noncontrolled grass weeds on corn yield. Delaying application of dicamba–acetamide tank mixes until 14 d after planting often resulted in lower and less consistent giant foxtail control compared with applications at planting or 7 d after planting. Corn grain yield was reduced at one site where giant foxtail control was lower when application was delayed until 14 d after planting. Common lambsquarters control was excellent with 7 or 14 d after planting applications. At one site, common lambsquarters control and corn yield was reduced by application at planting. Dicamba–alachlor tank mixes applied 7 d after planting provided similar weed control or corn yield, while at planting and 14 d after planting applications provided less consistent weed control or corn yield than a sequential alachlor plus dicamba treatment or an atrazine-based program.


2012 ◽  
Vol 26 (4) ◽  
pp. 617-621 ◽  
Author(s):  
Laura E. Lindsey ◽  
Wesley J. Everman ◽  
Andrew J. Chomas ◽  
James J. Kells

Field studies were conducted from 2007 to 2009 in East Lansing, MI to evaluate three residual herbicide programs, three POST herbicide application timings, and two POST herbicides in glyphosate- and glufosinate-resistant corn. Herbicide programs included a residual PRE-applied herbicide followed by (fb) POST application (residual fb POST), a residual herbicide tank-mixed with a POST herbicide (residual + POST), and a nonresidual POST. Three POST herbicide application timings included early POST (EP), mid-POST (MP), and late POST (LP) at an average corn growth stage of V3/V4, V4/V5, and V5/V6, respectively. The two POST herbicides evaluated were glyphosate and glufosinate. Control of common lambsquarters and giant foxtail was evaluated 28 d after the LP application. Glyphosate often provided greater weed control than glufosinate. The LP application resulted in greater giant foxtail control compared with the EP application timing, which may be attributed to control of late-emerging weeds. The EP application timing improved common lambsquarters control compared with the LP application timing. The residual + POST program resulted in greater weed control compared with the residual fb POST program in all years. The effect of residual herbicide program, POST herbicide, and POST application timing on corn grain yield varied by year. In 2007, the use of glyphosate resulted in higher grain yield compared with glufosinate. In 2008, corn grain yield was the highest in the PRE fb POST program and with POST applications at EP and MP. To provide the most consistent weed control and minimize the likelihood of grain yield reductions, a PRE fb POST program applied at EP or MP is recommended.


Weed Science ◽  
1996 ◽  
Vol 44 (4) ◽  
pp. 903-910
Author(s):  
Gail A. Wicks ◽  
Robert G. Wilson ◽  
Garold W. Mahnken ◽  
Gordon E. Hanson

Field studies were conducted to determine the influence of annual herbicide treatments plus cultivation on weed populations and corn yields in ridge-till corn during a 3-yr period at Mitchell, NE, and a 7-yr period at North Platte, NE. When the experiment was initiated at North Platte, no weeds were present before corn planting. It took 4 yr before triazine-resistant kochia became a problem before corn planting in plots treated with atrazine, but these were controlled by other operations prior to corn harvest. In the cultivated check, green foxtail densities before harvest increased from 0 in 1985 to 32 plants 100 m−2in 1991. Annual applications of dicamba plus 2,4-D 10 d early preplant followed by cultivation controlled triazine-resistant kochia and velvetleaf, but common lambsquarters, nightshade species, and green foxtail increased. Volunteer corn was controlled with cultivation. After 3 yr at Mitchell, the annual weed population increased 10-fold in the cultivated check. Thus, corn yields were reduced 64% with two cultivations compared with an annual early preplant application of dicamba plus 2,4-D followed by alachlor plus cyanazine PRE and two cultivations. With two cultivations under low annual weed populations at North Platte, grain yield from the cultivated check treatment was not different from annual treatments of herbicides after 7 yr. Metolachlor plus atrazine occasionally caused a reduction in corn grain yields.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 615-621 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
Gerald L. Wiley ◽  
F. Robert Walls

Field studies in 1990 and 1991 at six locations in Georgia and one location in North Carolina evaluated AC 263,222 for weed control, peanut tolerance, and yield. AC 263,222 applied early postemergence at 71 g ai ha−1controlled bristly starbur, coffee senna, common lambsquarters,Ipomoeaspecies, prickly sida, sicklepod, smallflower morningglory, and yellow nutsedge at least 91%. AC 263,222 controlled common cocklebur 77% and Florida beggarweed from 47 to 100%. Crop injury was 4% for AC 263,222 applied once and 12% or less from two applications. Mixtures of bentazon with AC 263,222 did not improve control compared to AC 263,222 alone. Imazethapyr did not improve control of AC 263,222 systems. In several locations, bentazon reduced control of Florida beggarweed with AC 263,222 when applied in a mixture compared to AC 263,222 alone. Weed control from the standard of paraquat plus bentazon applied early postemergence followed by paraquat, bentazon plus 2,4-DB applied POST did not provide the level or spectrum of weed control as AC 263,222 systems.


2004 ◽  
Vol 18 (2) ◽  
pp. 268-276 ◽  
Author(s):  
Ian C. Burke ◽  
John W. Wilcut

An experiment was conducted at five locations in North Carolina during 2000 and 2001 to evaluate weed control, crop injury, and cotton yield. Weed management systems included different combinations of pyrithiobac preemergence (PRE), fluometuron PRE, CGA-362622 postemergence (POST), pyrithiobac POST, and monosodium salt of methylarsonic acid (MSMA) plus prometryn applied late POST-directed (LAYBY). At Goldsboro in 2000, cotton was injured 74 to 78% by CGA-362622 POST when evaluated 4 to 7 d after treatment (DAT). Injury at Clayton, Goldsboro, and Lewiston in 2001 and Rocky Mount in 2000 was less than 16% 4 to 7 DAT with the same treatment and was not apparent by 62 DAT. CGA-362622 controlled common lambsquarters, common ragweed, Palmer amaranth, sicklepod, smooth pigweed, andIpomoeaspecies including entireleaf, ivyleaf, and pitted morningglory, and the addition of pyrithiobac to the herbicide system, either PRE or POST, increased control ofAmaranthusspecies, jimsonweed, and prickly sida. CGA-362622 did not control jimsonweed or prickly sida. Fluometuron PRE, pyrithiobac PRE, and MSMA plus prometryn LAYBY were beneficial for increasing weed control and cotton lint yields. Prometryn plus MSMA LAYBY increased control of common ragweed, entireleaf morningglory, jimsonweed, pitted morningglory, and smooth pigweed and provided higher cotton yields than similar systems without a LAYBY. The greatest weed control and greatest cotton lint yields required complete weed management systems that included a combination of PRE, POST, and LAYBY treatments.


Weed Science ◽  
2003 ◽  
Vol 51 (6) ◽  
pp. 1002-1009 ◽  
Author(s):  
Dunk Porterfield ◽  
John W. Wilcut ◽  
Jerry W. Wells ◽  
Scott B. Clewis

Field studies conducted at three locations in North Carolina in 1998 and 1999 evaluated crop tolerance, weed control, and yield with CGA-362622 alone and in combination with various weed management systems in transgenic and nontransgenic cotton systems. The herbicide systems used bromoxynil, CGA-362622, glyphosate, and pyrithiobac applied alone early postemergence (EPOST) or mixtures of CGA-362622 plus bromoxynil, glyphosate, or pyrithiobac applied EPOST. Trifluralin preplant incorporated followed by (fb) fluometuron preemergence (PRE) alone or fb a late POST–directed (LAYBY) treatment of prometryn plus MSMA controlled all the weed species present less than 90%. Herbicide systems that included soil-applied and LAYBY herbicides plus glyphosate EPOST or mixtures of CGA-362622 EPOST plus bromoxynil, glyphosate, or pyrithiobac controlled broadleaf signalgrass, entireleaf morningglory, large crabgrass, Palmer amaranth, prickly sida, sicklepod, and smooth pigweed at least 90%. Only cotton treated with these herbicide systems yielded equivalent to the weed-free check for each cultivar. Bromoxynil systems did not control Palmer amaranth and sicklepod, pyrithiobac systems did not control sicklepod, and CGA-362622 systems did not control prickly sida.


2004 ◽  
Vol 18 (4) ◽  
pp. 1018-1022 ◽  
Author(s):  
Joyce Tredaway Ducar ◽  
John W. Wilcut ◽  
John S. Richburg

Field studies were conducted in 1992 and 1993 to evaluate imazapic alone and in postemergence (POST) mixtures with atrazine or bentazon for weed control in imidazolinone-resistant corn treated with carbofuran. Nicosulfuron and nicosulfuron plus atrazine also were evaluated. Imazapic at 36 and 72 g ai/ha controlled large crabgrass 85 and 92%, respectively, which was equivalent to control obtained with nicosulfuron plus atrazine. Imazapic at the higher rate controlled large crabgrass better than nicosulfuron alone. Imazapic at 36 and 72 g/ha controlled Texas panicum 88 and 99%, respectively, and at the higher rate control was equivalent to that obtained with nicosulfuron alone or in mixture with atrazine. Imazapic plus bentazon POST controlled Texas panicum less than imazapic at the lower rate applied alone. Redroot pigweed was controlled 100% with all herbicide treatments. Imazapic at either rate alone or in tank mixture with bentazon or atrazine controlled prickly sida >99%, which was superior to control obtained with nicosulfuron or nicosulfuron plus atrazine. Smallflower, entireleaf, ivyleaf, pitted, and tall morningglories were controlled 96% or greater with all herbicide treatments except nicosulfuron alone. Sicklepod control was >88% with all imazapic treatments, whereas control from nicosulfuron alone was 72%. Corn yields were improved by the addition of POST herbicides with no differences among POST herbicide treatments.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 971D-972
Author(s):  
Harlene M. Hatterman-Valenti ◽  
Carrie E. Schumacher ◽  
Collin P. Auwarter ◽  
Paul E. Hendrickson

Field studies were conducted at Absaraka, Carrington, and Oakes, N.D., in 2005 to evaluate early season broadleaf weed control and onion (Allium cepa L.) injury with herbicides applied preemergence to the crop. DCPA is a common preemergence herbicide used in onion. However, DCPA can be uneconomical in most high-weed situations, or the usage may be restricted due to possible groundwater contamination. Potential substitutes evaluated were bromoxynil, dimethenamid-P, and pendimethalin. Main broadleaf weeds were redroot pigweed (Amaranthus retroflexus L.) and common lambsquarters (Chenopodium album L.). In general, all herbicides, except bromoxynil, provided acceptable broadleaf weed control 4 weeks after treatment. The highest herbicide rate provided greater weed control compared with the lowest rate for each herbicide. However, onion height was also reduced with the highest herbicide rate. In addition, the two highest rates of dimethenamid-P reduced the onion stand compared with the untreated. A postemergence application of bromoxynil + oxyfluorfen + pendimethalin to onion at the four- to five-leaf stage controlled the few broadleaf weeds that escaped the preemergence treatments and provided residual control of mid- and late-season germinating broadleaf weeds at two of the three locations. Intense germination of redroot pigweed during July at the Oakes location reduced onion yield with all treatments compared with the hand-weeded check. In contrast, total onion yields with all herbicide treatments except the high rate of dimethenamid-P were similar to the hand-weeded check at Absaraka and Carrington.


1991 ◽  
Vol 5 (4) ◽  
pp. 795-798 ◽  
Author(s):  
John W. Wilcut

Field studies in 1988 and 1989 evaluated POST herbicides alone and in tank-mixtures for tropic croton control in peanut. Acifluorfen + 2,4-DB, acifluorfen + bentazon, acifluorfen + bentazon + 2,4-DB controlled > 90% of tropic croton when applied at 2 or 4 wk after crop emergence. Paraquat + bentazon controlled 55% at 2 wk and 24% at 4 wk after crop emergence. Imazethapyr and imazethapyr + 2,4-DB controlled < 24% tropic croton at either 2 or 4 wk after crop emergence. Acifluorfen + 2,4-DB, acifluorfen + bentazon, and acifluorfen + bentazon + 2,4-DB controlled at least 90% of the common lambsquarters, common ragweed, and morningglory species. Greatest yields and net returns were obtained with acifluorfen + bentazon + 2,4-DB applied 2 wk after crop emergence. Yields were higher with acifluorfen + bentazon + 2,4-DB and imazethapyr applied at 2 wk after crop emergence than at 4 wk after crop emergence. All other herbicide treatments provided equivalent yields among application timings. Only acifluorfen + 2,4-DB provided equivalent net returns at either application timing. All other herbicide treatments provided lower net returns with applications made at 4 wk than at 2 wk after crop emergence.


Sign in / Sign up

Export Citation Format

Share Document