Temperature Influences Creeping Bentgrass (Agrostis stolonifera) and Annual Bluegrass (Poa annua) Response to Bispyribac-Sodium

2006 ◽  
Vol 20 (3) ◽  
pp. 728-732 ◽  
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart

Bispyribac-sodium is a POST herbicide that selectively controls annual bluegrass in creeping bentgrass, but inconsistent results with seasonal applications are believed to occur from temperature influences on bispyribac-sodium efficacy. Growth chamber experiments at the New Jersey Experimental Greenhouse Research Complex, New Brunswick, NJ, investigated three temperature regimes on ‘L-93’ creeping bentgrass and annual bluegrass responses to bispyribac-sodium. Annual bluegrass and creeping bentgrass exhibited contrasting responses to bispyribac-sodium as temperature increased from 10 to 30 C. Regressions of 4 week after treatment (WAT) data revealed as temperature increased from 10 to 30 C, required bispyribac-sodium rates for 50% clipping reduction (CR50) of annual bluegrass decreased from 85 to 31 g ai/ha and required rates for 50% leaf chlorosis decreased from greater than 296 to 98, indicating increased herbicidal efficacy at higher temperatures. In contrast, required bispyribac-sodium rates for creeping bentgrass CR50increased from 200 to greater than 296 as temperature increased from 10 to 30 C. Bispyribac-sodium discolored creeping bentgrass 0 to 20% at 20 and 30 C and discoloration increased 10 to 50% at 10 C. Thus, warmer temperatures (20 and 30 C) increase bispyribac-sodium efficacy for annual bluegrass control with minimal bentgrass discoloration; however, cooler temperatures (10 C) have minimal efficacy on annual bluegrass and increase bentgrass chlorosis.

Plant Disease ◽  
2011 ◽  
Vol 95 (1) ◽  
pp. 78-78 ◽  
Author(s):  
E. N. Njambere ◽  
B. B. Clarke ◽  
S. A. Bonos ◽  
J. A. Murphy ◽  
R. Buckley ◽  
...  

Waitea circinata var. circinata was first reported as the causal agent of brown ring patch on annual bluegrass (Poa annua L.) in the United States in 2007 (2). In early April to mid-June of 2009, circular to irregularly shaped yellow rings resembling symptoms of this disease were observed on an annual bluegrass putting green at Rutgers University in North Brunswick, NJ. Severely infected foliage eventually turned brown as the disease progressed. During the same time period, similar disease symptoms were observed on creeping bentgrass (Agrostis stolonifera L.) from a golf course in Bedminster Township, NJ. The disease reappeared in both locations in April of 2010. Five additional samples with similar symptoms on creeping bentgrass and annual bluegrass were received at Rutgers Diagnostic Laboratory from Paramus, Madison, Allamuchy, and Farmingdale, NJ between late April and early May of 2010. Portions of diseased leaf and sheath tissue that displayed symptoms of the disease were disinfested for 1 min in 0.5% NaOCl, rinsed with sterile distilled water, and plated on potato dextrose agar (PDA) amended with 50 mg/liter of streptomycin sulfate. At the first sign of fungal growth, single hyphal tips were transferred to PDA. After 1 week at 25°C, white-to-orange mycelial colonies formed in culture and eventually turned brown with age. Minute sclerotia (≤3 mm), which followed the same color development pattern, formed within 10 days. These features are consistent with those described of W. circinata var. circinata (2,3). The internal transcribed spacer (ITS) region of the ribosomal RNA gene was amplified using primer pair ITS1/ITS4 and sequenced with ITS4 (GenBank Accession Nos. HQ166065 to HQ166071). BLASTn analysis of the ITS sequences showed a 99 to 100% similarity to W. circinata var. circinata sequences deposited in GenBank (1,2). Pathogenicity tests were conducted in 2010 using 6-week-old creeping bentgrass seedlings cv. Declaration inoculated with colonized oat grain that had been autoclaved and then infested with the Bedminster Township isolate. Eight colonized oat grains were uniformly spread around the crowns of seedlings grown in 10-cm-diameter pots. Control plants were treated with autoclaved grain. Plants were incubated at 25°C and high humidity maintained by misting the plants three times per day. Within 3 days postinoculation, foliage near infested grain turned chlorotic. All foliage in pots became completely blighted and spherical orange-brown sclerotia were observed on leaf sheaths by the eighth day. W. circinata var. circinata was consistently reisolated from inoculated plants (as confirmed by isolate morphology and ITS sequencing) but not from control plants. The ITS sequence data, morphological characters of the isolates, and pathogenicity tests demonstrate that W. circinata var. circinata is present in New Jersey. To our knowledge, this is the first report of W. circinata var. circinata infecting turfgrass in New Jersey. References: (1) C. M. Chen et al. Plant Dis. 93:906, 2009. (2) K. A. de la Cerda et al. Plant Dis. 91:791, 2007. (3) T. Toda et al. Plant Dis. 89:536, 2005.


Weed Science ◽  
2013 ◽  
Vol 61 (2) ◽  
pp. 217-221 ◽  
Author(s):  
Jialin Yu ◽  
Patrick E. McCullough ◽  
William K. Vencill

Amicarbazone controls annual bluegrass in cool-season turfgrasses but physiological effects that influence selectivity have received limited investigation. The objective of this research was to evaluate uptake, translocation, and metabolism of amicarbazone in these species. Annual bluegrass, creeping bentgrass, and tall fescue required < 3, 56, and 35 h to reach 50% foliar absorption, respectively. At 72 h after treatment (HAT), annual bluegrass and creeping bentgrass translocated 73 and 70% of root-absorbed14C to shoots, respectively, while tall fescue only distributed 55%. Annual bluegrass recovered ≈ 50% more root-absorbed14C in shoots than creeping bentgrass and tall fescue. Creeping bentgrass and tall fescue metabolism of amicarbazone was ≈ 2-fold greater than annual bluegrass from 1 to 7 d after treatment (DAT). Results suggest greater absorption, more distribution, and less metabolism of amicarbazone in annual bluegrass, compared to creeping bentgrass and tall fescue, could be attributed to selectivity of POST applications.


2007 ◽  
Vol 21 (2) ◽  
pp. 426-430 ◽  
Author(s):  
Travis C. Teuton ◽  
Christopher L. Main ◽  
John C. Sorochan ◽  
J. Scott McElroy ◽  
Thomas C. Mueller

2019 ◽  
Vol 29 (4) ◽  
pp. 394-401 ◽  
Author(s):  
Thomas O. Green ◽  
John N. Rogers ◽  
James R. Crum ◽  
Joseph M. Vargas ◽  
Thomas A. Nikolai

Results suggest that sand topdressing was more consistent at reducing dollar spot (Clarireedia jacksonii) in fairway turfgrass more so than rolling. This practice could be an effective cost-saving alternative to reduce frequent fungicide applications. Research was conducted from 2011 to 2014 on a simulated golf fairway and examined dollar spot severity responses in a mixed-stand of creeping bentgrass (Agrostis stolonifera) and annual bluegrass (Poa annua ssp. reptans) to sand topdressing and rolling. Treatments consisted of biweekly sand topdressing, rolling at three frequencies (one, three, or five times weekly), a control, and three replications. Infection was visually estimated. Sand topdressing significantly (P < 0.05) reduced disease up to 50% at the peak of the dollar spot activity in 2011, 2013, and 2014. Results on the effects of rolling on dollar spot were inconsistent.


2011 ◽  
Vol 25 (3) ◽  
pp. 385-390
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart ◽  
Thomas Gianfagna ◽  
Fabio Chaves

Field and laboratory experiments were conducted in New Jersey to investigate the influence of nitrogen on annual bluegrass and creeping bentgrass metabolism and responses to bispyribac-sodium. In field experiments, withholding nitrogen during the test period increased sensitivity of both grasses to bispyribac-sodium, and grasses fertilized biweekly had darker color on most rating dates. Nitrogen generally increased annual bluegrass tolerance to bispyribac-sodium at 74 g ha−1but not at 148 g ha−1. Creeping bentgrass was influenced by nitrogen at both herbicide rates. In laboratory experiments, weekly nitrogen treatments increased14C-bispyribac-sodium metabolism in both grasses compared to unfertilized plants. Annual bluegrass metabolized approximately 50% less herbicide regardless of nitrogen regime compared to creeping bentgrass. Overall, routine nitrogen fertilization appears to improve annual bluegrass and creeping bentgrass tolerance to bispyribac-sodium, which may be attributed to higher metabolism.


2010 ◽  
Vol 24 (3) ◽  
pp. 332-335 ◽  
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart

Bispyribac-sodium effectively controls annual bluegrass in creeping bentgrass fairways but efficacy on putting greens may be affected by management differences and thus, application regimes may need to be modified for effective annual bluegrass control. To test this hypothesis, field experiments investigated various bispyribac-sodium application regimens for annual bluegrass control on creeping bentgrass putting greens. Bispyribac-sodium regimes totaling 148, 222, and 296 g ha−1controlled annual bluegrass 81, 83, and 91%, respectively, over 2 yr. Pooled over herbicide rates, bispyribac-sodium applied two, three, and six times controlled annual bluegrass 78, 83, and 94%, respectively. The most effective bispyribac-sodium regime was 24.6 g ha−1applied weekly, which controlled annual bluegrass 90% after 8 wk with acceptable levels of creeping bentgrass discoloration. After 8 wk, all regimes reduced turf quality as a result of voids in turf following annual bluegrass control; regimes with six applications reduced turf quality the most.


2010 ◽  
Vol 24 (4) ◽  
pp. 461-470 ◽  
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart ◽  
Dan Weisenberger ◽  
Zachary J. Reicher

Amicarbazone has potential for selective annual bluegrass control in cool-season turfgrasses, but seasonal application timings may influence efficacy. To test this hypothesis, field experiments in New Jersey and Indiana investigated amicarbazone efficacy from fall or spring applications and growth chamber experiments investigated the influence of temperature on efficacy. Fall treatments were more injurious to creeping bentgrass and Kentucky bluegrass than spring applications, but fall applications were also more efficacious for annual bluegrass control. In growth chamber experiments, injury and clipping weight reductions were exacerbated by increased temperatures from 10 to 30 C on annual bluegrass, creeping bentgrass, Kentucky bluegrass, and perennial ryegrass. Results suggest that amicarbazone use for annual bluegrass control in cool-season turf may be limited to spring applications, but increased temperature enhances activity on all grasses.


2003 ◽  
Vol 17 (4) ◽  
pp. 770-776 ◽  
Author(s):  
PAUL B. WOOSLEY ◽  
DAVID W. WILLIAMS ◽  
A. J. POWELL

2006 ◽  
Vol 20 (3) ◽  
pp. 722-727 ◽  
Author(s):  
Darren W. Lycan ◽  
Stephen E. Hart

Studies were conducted in 2002 and 2003 on a golf course fairway in New Jersey to compare spring, summer, and fall treatments of bispyribac-sodium for annual bluegrass control and creeping bentgrass tolerance. Single applications at 74, 111, or 148 g ai/ha were applied in May, August, or October. Split applications of 37 followed by (fb) 37 or 74 fb 74 g/ha applied 3 wk apart were also evaluated. Summer-applied bispyribac-sodium did not reduce bentgrass quality, whereas spring and fall treatments reduced turf quality at 3 wk after treatment and fall treatments in 2002 substantially reduced bentgrass quality. Summer treatments were more effective than spring or fall treatments in reducing annual bluegrass cover. Final evaluations revealed 36, 31, 21, and 26% annual bluegrass cover averaged across nontreated, spring-treated, summer-treated, and fall-treated plots, respectively. This study demonstrates that two split applications of bispyribac-sodium at 74 g/ha in summer can effectively reduce annual bluegrass cover while minimizing creeping bentgrass injury.


Sign in / Sign up

Export Citation Format

Share Document