Impact of Herbicides and Application Timing on Weed Control, Yield, and Nutritive Value of Tall Fescue Pastures and Hayfields

2010 ◽  
Vol 24 (4) ◽  
pp. 515-522 ◽  
Author(s):  
Kristin K. Payne ◽  
Byron B. Sleugh ◽  
Kevin W. Bradley

Field experiments were conducted from 2007 through 2009 at four locations in Missouri to evaluate the effect of May and August herbicide applications on weed control, total biomass yield, and forage nutritive values. Experiments were conducted in established tall fescue pastures that contained natural infestations of common ragweed and tall ironweed. Treatments consisted of 2,4-D, metsulfuron, aminopyralid, 2,4-D + dicamba, 2,4-D + picloram, aminopyralid + 2,4-D, and 2,4-D + dicamba + metsulfuron. All herbicide treatments provided > 76% control of common ragweed 1 mo after treatment (MAT), except metsulfuron alone which provided ≤ 62% control. August applications provided greater reductions in common ragweed density than May applications the following spring. Few differences in tall ironweed density were observed, but metsulfuron-containing herbicides tended to provide the lowest reduction in tall ironweed stem density the following spring. Biomass yields were generally greater in nontreated compared to herbicide-treated plots. Crude protein (CP) concentration and relative feed value (RFV) were higher in nontreated compared with herbicide-treated biomass. Overall, the poorer nutritive values and lower biomass yields in the herbicide-treated compared with the nontreated biomass may be partially explained by the removal of common ragweed, tall ironweed, and legumes with the herbicide treatments. Pure samples of common ragweed and white clover were greater in nutritive values than pure samples of tall fescue at all June harvests. Results indicate that common ragweed offers nutritive values equivalent to or greater than tall fescue and white clover when harvested in June at the vegetative stage of growth and that the removal of common ragweed and tall ironweed with herbicide applications is not likely to improve forage nutritive values of the total harvested biomass of tall fescue pastures, at least by the season after treatment.

2011 ◽  
Vol 25 (2) ◽  
pp. 222-229 ◽  
Author(s):  
Kristin K. Rosenbaum ◽  
K. W. Bradley ◽  
Craig A. Roberts

Separate field trials were conducted in 2007 and 2008 to investigate the effects of increasing densities of common ragweed or common cocklebur on total yield and forage nutritive values in tall fescue pastures. Common ragweed densities ranged from 0 to 188 plants m−2, and common cocklebur densities ranged from 0 to 134 plants m−2. Total biomass yields (weeds plus tall fescue) were determined in response to each weed density and species; pure samples of tall fescue, common ragweed, or common cocklebur were also hand collected from each plot at the time of the total biomass harvest. Near-infrared spectroscopy was used to predict crude protein (CP) concentration and in vitro true digestibility (IVTD) of the total harvested biomass, pure tall fescue, and pure weed species in each plot. Results indicate that biomass yields may increase by as much as 5 kg ha−1with each additional common ragweed plant m−2within a tall fescue stand. Additionally, CP concentration of the total harvested biomass, pure weed species, and tall fescue decreased by 0.2 to 0.4 g kg−1with each additional increase in common ragweed or common cocklebur plant per m−2. As weed densities increased, IVTD of pure tall fescue samples increased only minimally (0.04%), regardless of the weed species. An increase in common ragweed density also resulted in the CP concentration of pure samples of common ragweed to decrease by 0.2 g kg−1for each additional plant per m2and by 0.4 g kg−1for each additional common cocklebur per m2. Overall, results from these experiments indicate that plant biomass yield and nutritive values of the total harvested biomass are only marginally influenced by increasing common ragweed or common cocklebur densities.


2011 ◽  
Vol 25 (3) ◽  
pp. 506-510 ◽  
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart ◽  
James T. Brosnan ◽  
Gregory K. Breeden

Fenoxaprop effectively controls crabgrass in tall fescue turf, but antagonism with growth-regulating herbicides reduces potential to apply fenoxaprop in combination with many herbicides registered for broadleaf weed control. Aminocyclopyrachlor is a new broadleaf weed control herbicide that has not been evaluated in combination with fenoxaprop. Field experiments were conducted in Georgia, New Jersey, and Tennessee to investigate tank mixtures of fenoxaprop with aminocyclopyrachlor for smooth crabgrass and white clover control. Fenoxaprop alone exhibited substantial activity on smooth crabgrass but control was greater with fenoxaprop + aminocyclopyrachlor treatments. By 4 and 6 wk after treatment (WAT), approximately 22 and 44% less fenoxaprop was required to achieve 80% smooth crabgrass control when the herbicide was tank-mixed with aminocyclopyrachlor at 52.5 and 79 g ai ha−1, respectively. Fenoxaprop did not reduce white clover control with aminocyclopyrachlor because 97% control was achieved by 4 WAT for all aminocyclopyrachlor + fenoxaprop treatments. Tall fescue was not injured by any treatment. Results suggest aminocyclopyrachlor enhances fenoxaprop efficacy for smooth crabgrass control in tall fescue.


2009 ◽  
Vol 23 (2) ◽  
pp. 193-196 ◽  
Author(s):  
Cory M. Whaley ◽  
Gregory R. Armel ◽  
Henry P. Wilson ◽  
Thomas E. Hines

Field experiments were conducted in 2001, 2002, and 2003 to evaluate PRE applications of mesotrione at 150, 230, and 310 g ai/ha alone, and in mixtures with S-metolachlor at 1,070 g ai/ha and atrazine at 560 and 1,120 g ai/ha in corn. Corn injury was 11 to 18% with all treatments in 2002 when 3.2 cm of rainfall occurred within 10 d after PRE applications, but no injury was observed in 2001 and 2003 when rainfall was 0 and 1.1 cm within 10 d after PRE applications, respectively. Rainfall following PRE herbicide applications also influenced weed control, where weed control was generally poor with all herbicide treatments in 2001. Mesotrione at 150 g/ha controlled common lambsquarters and smooth pigweed at least 95% in 2002 and 2003, but control was 70% or less in 2001. PRE mesotrione at rates of 230 or 310 g/ha controlled common ragweed at least 83% in 2002 and 2003, but control exceeded 88% with mixtures of mesotrione at rates greater than 150 g/ha plus S-metolachlor plus atrazine at 560 g/ha. Morningglory species (ivyleaf morningglory, pitted morningglory, and tall morningglory) were not consistently controlled by mesotrione alone. In 2002 and 2003, mixtures of all mesotrione rates plus S-metolachlor plus atrazine at 1,120 g/ha controlled morningglory species at least 90%. Corn treated with mesotrione at any rate plus S-metolachlor plus atrazine at 1,120 g/ha consistently produced high yields. It is concluded that control with this three-way mixture would be most consistent with a minimum rate of mesotrione at 230 g/ha and atrazine at 1,120 g/ha.


1998 ◽  
Vol 12 (1) ◽  
pp. 137-144 ◽  
Author(s):  
Kelly A. Nelson ◽  
Karen A. Renner

Field experiments were conducted at East Lansing and Clarksville, MI, to evaluate the efficacy of imazamox, imazethapyr, and CGA-277476 plus quizalofop applied postemergence in wide- (76-cm) and narrow- (19-cm) row soybean. Soybean injury from all herbicides was minimal 14 days after treatment (DAT), except for CGA-277476 at 79 g ai/ha plus 69 g ai/ha quizalofop, which caused 30% soybean injury at the Clarksville location. Adding 4 g ai/ha CGA-248757 to 65 g ai/ha CGA-277476 plus quizalofop reduced common ragweed control, but increased redroot pigweed control in wide rows compared to 79 g ai/ha CGA-277476 plus quizalofop. Imazamox at 35 and 45 g ai/ha provided greater common ragweed and common lambsquarters control than imazethapyr at 70 g ai/ha 28 DAT. All herbicide treatments controlled velvetleaf. Common ragweed and common lambsquarters control by all herbicide treatments was enhanced in narrow- compared to wide-row soybean 56 DAT as was redroot pigweed control by CGA-277476 treatments. Total weed biomass and soybean yield in wide-row soybean treated with imazamox at 45 g/ha was not different from the hand-weeded control. In narrow-row soybean, soybean yield was equal to the hand-weeded control for 35 and 45 g/ha imazamox and 70 g/ha imazethapyr. Postemergence herbicide treatments resulted in less weed biomass and greater soybean yield in narrow- compared to wide-row soybean.


2021 ◽  
pp. 1-25
Author(s):  
Matthew J. R. Goddard ◽  
Clebson G. Gonçalves ◽  
Shawn D. Askew

Abstract Mesotrione typically requires multiple applications to control emerged weeds in turfgrass. Since it is absorbed by both foliage and roots, a controlled-release (CR) formulation could eliminate the need for multiple applications. Research was conducted evaluate simulated-release scenarios that mimic a potential CR mesotrione formulation. A soluble concentrate formulation of mesotrione was titrated to produce a stepwise change in mesotrione rates, which were applied daily to mimic predetermined release scenarios over a three-wk period. CR scenarios were compared to a broadcast treatment of mesotrione at 280 g ai ha-1 applied twice at three-wk intervals, and a nontreated. Mesotrione applied in three temporal release scenarios controlled creeping bentgrass, goosegrass, nimblewill, smooth crabgrass, and white clover equivalent to the standard sprayed mesotrione treatment in every comparison. However, each CR scenario injured tall fescue 2 to 7 times more than the standard treatment. Soil- and foliar-initiated repeat treatments were equivalent in most comparisons. Data indicates that mesotrione applied in a temporal range to simulate controlled release scenarios can deliver desired weed control efficacy comparable to sequential broadcast applications. More research is needed to elucidate proper timings and release scenarios to minimize turfgrass injury.


2018 ◽  
Vol 32 (5) ◽  
pp. 597-602 ◽  
Author(s):  
Marcelo Zimmer ◽  
Bryan G. Young ◽  
William G. Johnson

AbstractSynthetic auxin herbicides such as 2,4-D and dicamba are often utilized to control broadleaf weeds in preplant burndown applications to soybean. Halauxifen-methyl is a new synthetic auxin herbicide for broadleaf weed control in preplant burndown applications to corn, cotton, and soybean at low use rates (5 g ae ha–1). Field experiments were conducted to evaluate efficacy and weed control spectrum of halauxifen-methyl applied alone and in mixtures with 2,4-D (560 g ae ha–1), dicamba (280 g ae ha–1), and glyphosate (560 g ae ha–1). Glyphosate-resistant (GR) horseweed was controlled with halauxifen-methyl applied alone (90% control) and in mixtures (87% to 97% control) 35 d after treatment (DAT). Common ragweed was controlled 93% with halauxifen-methyl applied alone and 91% to 97% in mixtures 35 DAT. Halauxifen-methyl applied alone resulted in poor giant ragweed control 21 DAT (73% control); however, mixtures of halauxifen-methyl with 2,4-D, dicamba, or glyphosate controlled giant ragweed (86% to 98% control). Halauxifen-methyl alone resulted in poor redroot pigweed control (62% control) 21 DAT; however, mixtures of halauxifen-methyl with dicamba, 2,4-D, or glyphosate controlled redroot pigweed (89% to 98% control). Halauxifen-methyl controls GR horseweed and common ragweed applied alone and in mixtures with other synthetic auxin herbicides and glyphosate. Furthermore, mixing 2,4-D or dicamba with halauxifen-methyl can increase the weed control spectrum in preplant burndown applications.


1996 ◽  
Vol 10 (1) ◽  
pp. 145-152 ◽  
Author(s):  
John S. Richburg ◽  
John W. Wilcut ◽  
Daniel L. Colvin ◽  
Gerald R. Wiley

Field experiments conducted at four locations in Georgia and two locations in Florida during 1992 and 1993 evaluated AC 263,222 application rates and timings, systems, and mixtures for weed control, peanut injury, and yield. All rates of AC 263,222 applied early POST (EPOST) or POST controlledIpomoeamorningglories and smallflower morningglory at least 90%, and purple and yellow nutsedge at least 81%. Florida beggarweed and sicklepod control generally was highest when metolachlor was applied PPI followed by AC 263,222 applied EPOST at 71 g/ha, AC 263,222 at 27 or 36 g/ha plus bentazon plus paraquat applied POST, or with bentazon plus paraquat applied EPOST followed by AC 263,222 applied POST at 36 or 53 g/ha. Acifluorfen and acifluorfen plus bentazon reduced Florida beggarweed and sicklepod control at several locations when applied in mixture with AC 263,222. Common ragweed and hairy indigo control were 85 to 95% with bentazon plus paraquat applied EPOST followed by AC 263,222 applied POST at 36 or 53 g/ha. Highest peanut yields were obtained with treatments providing high levels of weed control.


2018 ◽  
Vol 32 (4) ◽  
pp. 364-370 ◽  
Author(s):  
Zachary D. Lancaster ◽  
Jason K. Norsworthy ◽  
Robert C. Scott

AbstractField experiments were conducted in 2014 and 2015 in Fayetteville, Arkansas, to evaluate the residual activity of acetyl-CoA carboxylase (ACCase)–inhibiting herbicides for monocot crop injury and weed control. Conventional rice, quizalofop-resistant rice, grain sorghum, and corn crops were evaluated for tolerance to soil applications of six herbicides (quizalofop at 80 and 160 g ai ha–1, clethodim at 68 and 136 g ai ha–1, fenoxaprop at 122 g ai ha–1, cyhalofop at 313 g ai ha–1, fluazifop at 210 and 420 g ai ha–1, and sethoxydim at 140 and 280 g ai ha–1). Overhead sprinkler irrigation of 1.3 cm was applied immediately after treatment to half of the plots, and the crops planted into the treated plots at 0, 7, and 14 d after herbicide treatment. In 2014, injury from herbicide treatments increased with activation for all crops evaluated, except for quizalofop-resistant rice. At 14 d after treatment (DAT) in 2014, corn and grain sorghum were injured 19% and 20%, respectively, from the higher rate of sethoxydim with irrigation activation averaged over plant-back dates. Conventional rice was injured 13% by the higher rate of fluazifop in 2014. Quizalofop-resistant rice was injured no more than 4% by any of the graminicides evaluated in either year. In 2015, a rainfall event occurred within 24 h of initiating the experiment; thus, there were no differences between activation via irrigation or by rainfall. However, as in 2014, grain sorghum and corn were injured 16% and 13%, respectively, by the higher rate of sethoxydim, averaged over plant-back dates. All herbicides provided little residual control of grass weeds, mainly broadleaf signalgrass and barnyardgrass. These findings indicate the need to continue allowing a plant-back interval to rice following a graminicide application, unless quizalofop-resistant rice is to be planted. The plant-back interval will vary by graminicide and the amount of moisture received following the application.


2019 ◽  
Vol 33 (03) ◽  
pp. 431-440
Author(s):  
Thomas J. Peters ◽  
Andrew B. Lueck ◽  
Aaron L. Carlson

AbstractSugarbeet growers only recently have combined ethofumesate, S-metolachlor, and dimethenamid-P in a weed control system for waterhemp control. Sugarbeet plant density, visible stature reduction, root yield, percent sucrose content, and recoverable sucrose were measured in field experiments at five environments between 2014 and 2016. Sugarbeet stand density and stature reduction occurred in some but not all environments. Stand density was reduced with PRE application of S-metolachlor at 1.60 kg ai ha–1 and S-metolachlor at 0.80 kg ha–1 + ethofumesate at 1.68 kg ai ha–1 alone or followed by POST applications of dimethenamid-P at 0.95 kg ai ha–1. Sugarbeet visible stature was reduced when dimethenamid-P followed PRE treatments. Stature reduction was greatest with ethofumesate at 1.68 or 4.37 kg ha–1 PRE and S-metolachlor at 0.80 kg ha–1 + ethofumesate at 1.68 kg ha–1 PRE followed by dimethenamid-P at 0.95 kg ha–1 POST. Stature reduction ranged from 0 to 32% 10 d after treatment (DAT), but sugarbeet recovered quickly and visible injury was negligible 23 DAT. Although root yield and recoverable sucrose were similar across herbicide treatments and environments, we caution against the use of S-metolachlor at 0.80 kg ha–1 + ethofumesate at 1.68 kg ai ha–1 PRE followed by dimethenamid-P at 0.95 kg ha–1 in sugarbeet.


1994 ◽  
Vol 8 (1) ◽  
pp. 23-27 ◽  
Author(s):  
David L. Jordan ◽  
John W. Wilcut ◽  
Leslie D. Fortner

Field experiments conducted in 1988 and 1989 evaluated clomazone alone and in a systems approach for weed control in peanut. Clomazone PPI at 0.8 kg ai/ha controlled common ragweed, prickly sida, spurred anoda, and tropic croton better than ethalfluralin and/or metolachlor applied PPI. POST application of acifluorfen plus bentazon was not needed to control these weeds when clomazone was used. Acifluorfen plus bentazon improved control of these weeds when clomazone was not used and generally were necessary to obtain peanut yields regardless of the soil-applied herbicides. Alachlor PRE did not improve clomazone control of any weed species evaluated. Fall panicum and large crabgrass control was similar with clomazone or clomazone plus ethalfluralin.


Sign in / Sign up

Export Citation Format

Share Document