control spectrum
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 19 ◽  
pp. 215-222
Author(s):  
Nusrat Jahan ◽  
Ashikur Rahman Khan ◽  
Main Uddin ◽  
Mahamudul Hasan Rana

A single bidirectional link is used to allow communication between two devices in the device-todevice (D2D) communication system. D2D technology has to implement with the current cellular system. As both users D2D and cellular use the same licensed spectrum for transmission the chances of interferences increases. It is challenging for researchers to find out the proper mechanism to decrease interference and maximize performances. In this paper, we try to survey the challenges and their solutions to enable D2D communication in the cellular network with low interference. Here we describe the peer discover, mode selection process and interference management with power control and resource allocation. Finally, we can say that with proper power control, spectrum slicing and resource allocation we can mitigate co-tier and cross-tier interferences.


2020 ◽  
Vol 19 ◽  
pp. 17
Author(s):  
LEANDRO GALON ◽  
MAICON RODRIGUES DA SILVA ◽  
ALEXANDRE FERREIRA DA SILVA ◽  
ANDRÉ DALPONTE MENEGAT ◽  
RENAN PAWELKIEWICZ ◽  
...  

The glufosinate-ammonium is an herbicide with contact action and, whenused in tolerant LL maize, requires associations with other products to improve the weed control spectrum and increase the residual period in the area. The aim of this work was to evaluate the efficacy and selectivity of glufosinate-ammonium, applied alone and in combination with other herbicides, for weed control in maize crops. The treatments consisted of two strategies. In the first one, the following herbicides were applied in pre-emergence conditions: atrazine, [atrazine + simazine], [atrazine + oil], [atrazine + S-metolachlor], and S-metolachlor; with the subsequent application of glufosinate-ammonium in post-emergence condition of maize. The second application method corresponded to the use of glufosinate-ammonium, alone and combined with nicosulfuron + mesotrione and the other products used in the first strategy, in addition to two control areas, being one weed-infested and the other weed-free. Phytotoxicity on maize and weed control were assessed. Ear insertion height, number of rows per ear, number of grains per row, thousand grain weight and maize yield were determined upon harvesting. The herbicides were effective and did not cause yield loss to the crop. The herbicides applied in combination with glufosinate-ammonium were efficient in regard to weed control and selective to maize.


2020 ◽  
Vol 47 (2) ◽  
pp. 103-110
Author(s):  
Katilyn Price ◽  
Xiao Li ◽  
Andrew Price ◽  
Charles Chen ◽  
Timothy Grey

ABSTRACT Herbicide tank mixes are often used to reduce peanut injury caused by paraquat and broaden the weed control spectrum. New peanut cultivars are continuously being introduced therefore determining tolerance to paraquat based herbicide programs is essential to provide growers with appropriate recommendations. The objective of this trial was to evaluate effect of paraquat based herbicide programs on newer peanut cultivars growth and yield. Field trials were conducted in Macon, Henry and Baldwin counties in Alabama in 2016 and 2017 and the peanut cultivars ‘Georgia 06G', ‘Georgia 12Y', ‘Georgia 14N', and ‘TufRunner 511’ were evaluated. Paraquat was applied alone (210, 280, 420 g ai/ha), in tank mixes with either bentazon plus acifluorfen or 2,4-DB and one of the following, S-metolachlor, pyroxasulfone, acetochlor, or pyroxasulfone plus carfentrazone at the highest labeled rates 3 to 4 wk after peanut planting. No cultivar by treatment interactions were observed for any growth parameters evaluated for any location. In 2017, paraquat either applied at 280 g ai/ha alone, tank mixed with S-metolachlor plus 2,4-DB, or with S-metolachlor plus bentazon plus acifluorfen significantly reduced canopy widths of 22 to 30%, 12 to 22%, and 20 to 37% respectively at 45 to 48 DAP when compared to the non-treated check (NTC). Yield reductions compared to the NTC were rare, paraquat plus bentazon plus acifluorfen plus pyroxasulfone plus carfentrazone had a 13% yield loss in Henry County and a 7% yield loss with paraquat 280 g ai/ha at Baldwin County in 2016 only. Data indicates peanut stunting may be observed following applications of paraquat tank mixes evaluated in this study, but it is unlikely these effects result in yield loss.


2020 ◽  
Vol 22 (27) ◽  
pp. 15120-15162 ◽  
Author(s):  
Xiangfu Wang ◽  
Jintang Xu ◽  
Jihong Yu ◽  
Yanyan Bu ◽  
Jose Marques-Hueso ◽  
...  

This review summarizes the morphology control strategy, phase transfer theory, spectrum modulation, and extended optical applications of RE3+-doped phosphors.


2019 ◽  
Vol 24 (8) ◽  
pp. 1455-1464 ◽  
Author(s):  
Jaqueline Franciosi Della Vechia ◽  
Renato Beozzo Bassanezi ◽  
Daniel Junior Andrade

Citrus leprosis, caused by Citrus leprosis virus cytoplasmic type (CiLV-C), is one of the major citrus diseases. Such disease is mainly managed by controlling the vector, which is a mite of the genus Brevipalpus (Acari: Tenuipalpidae). To increase pest control spectrum and reduce costs, citrus growers often prefer to tank mix pesticides. However, the effect of pesticide combinations made up of insecticides and acaricides is little known yet. Therefore, our goal was to evaluate the physicochemical compatibility of spray mixtures with acaricides (spirodiclofen, propargite, and cyflumetofen) and the most commonly used insecticides in citrus orchards, as well as to evaluate their biological effect on Brevipalpus yothersi (Baker). Mixing insecticides with the acaricides such as spirodiclofen, propargite, and cyflumetofen had no interfere with the physicochemical stability of tank mixtures. However, the combination of imidacloprid, bifenthrin, cypermethrin, and phosmet with spirodiclofen reduced acaricide control efficiency in 20.9%, 18.9%, 9.7%, and 21.9%, respectively. These mixtures are not recommended for B. yothersi control.


HortScience ◽  
2019 ◽  
Vol 54 (4) ◽  
pp. 706-714
Author(s):  
Feras Almasri ◽  
Husein A. Ajwa ◽  
Sanjai J. Parikh ◽  
Kassim Al-Khatib

Methyl bromide (MeBr) was identified as a stratospheric ozone depletory; therefore, the use of MeBr was phased out in the United States in 2005. Chloropicrin (CP) and allyl isothiocyanate (AITC) are MeBr replacements. A mixture of CP and AITC is commonly applied to broaden the pest control spectrum. These two fumigants have low soil mobility; however, their efficacy could be improved if their soil mobility were enhanced. This research was conducted to study the effects of surfactants applied at 5% (v/v) for CP mobility and AITC mobility in soils. Mobility of the CP/AITC mixture applied with a nonionic surfactant comprising oleic, linoleic, and palmitic acids (nonionic-1) and mobility of the CP/AITC mixture applied with a nonionic surfactant comprising C9 hydrocarbon aromatics and calcium alkylarylsuphonate (nonionic-2) were compared with mobility of the CP/AITC mixture applied without surfactants in three soils (Elder sandy loam, Chualar loam, and Blanco clay loam) during a laboratory study. Nonionic-1 surfactant increased the concentration of total leachate collected for AITC by five and CP by 11 compared with CP/AITC applied alone. Surfactants may influence the fumigant mobility in soil by affecting the sorption/desorption equilibrium. Our research suggested that increased AITC mobility and CP mobility in soil with the addition of adding nonionic-1 surfactant may be due to the adsorption behavior of the surfactant in the soil and the solubilizing capability of the surfactant with pesticides.


2018 ◽  
Vol 32 (5) ◽  
pp. 597-602 ◽  
Author(s):  
Marcelo Zimmer ◽  
Bryan G. Young ◽  
William G. Johnson

AbstractSynthetic auxin herbicides such as 2,4-D and dicamba are often utilized to control broadleaf weeds in preplant burndown applications to soybean. Halauxifen-methyl is a new synthetic auxin herbicide for broadleaf weed control in preplant burndown applications to corn, cotton, and soybean at low use rates (5 g ae ha–1). Field experiments were conducted to evaluate efficacy and weed control spectrum of halauxifen-methyl applied alone and in mixtures with 2,4-D (560 g ae ha–1), dicamba (280 g ae ha–1), and glyphosate (560 g ae ha–1). Glyphosate-resistant (GR) horseweed was controlled with halauxifen-methyl applied alone (90% control) and in mixtures (87% to 97% control) 35 d after treatment (DAT). Common ragweed was controlled 93% with halauxifen-methyl applied alone and 91% to 97% in mixtures 35 DAT. Halauxifen-methyl applied alone resulted in poor giant ragweed control 21 DAT (73% control); however, mixtures of halauxifen-methyl with 2,4-D, dicamba, or glyphosate controlled giant ragweed (86% to 98% control). Halauxifen-methyl alone resulted in poor redroot pigweed control (62% control) 21 DAT; however, mixtures of halauxifen-methyl with dicamba, 2,4-D, or glyphosate controlled redroot pigweed (89% to 98% control). Halauxifen-methyl controls GR horseweed and common ragweed applied alone and in mixtures with other synthetic auxin herbicides and glyphosate. Furthermore, mixing 2,4-D or dicamba with halauxifen-methyl can increase the weed control spectrum in preplant burndown applications.


2018 ◽  
Vol 32 (3) ◽  
pp. 319-325 ◽  
Author(s):  
M. Ryan Miller ◽  
Jason K. Norsworthy

AbstractFlorpyrauxifen-benzyl is a new herbicide being developed for rice. Research is needed to understand its spectrum of control and optimal tank-mix partners. Multiple greenhouse and field experiments were conducted to evaluate florpyrauxifen-benzyl efficacy and tank-mix compatibility. In greenhouse experiments, florpyrauxifen-benzyl at 30 g ai ha–1provided ≥75% control of all weed species evaluated (broadleaf signalgrass, barnyardgrass, Amazon sprangletop, large crabgrass, northern jointvetch, hemp sesbania, pitted morningglory, Palmer amaranth, yellow nutsedge, rice flatsedge, smallflower umbrellasedge), and control was similar to or better than other herbicide options currently available in rice. Barnyardgrass was controlled 97% with florpyrauxifen-benzyl at 30 g ha–1, ultimately reducing height (86%) and aboveground biomass (84%). In these field studies at 30 g ha–1, no antagonism was observed when florpyrauxifen-benzyl was tank-mixed with contact (acifluorfen, bentazon, carfentrazone, propanil, and saflufenacil) or systemic (2,4-D, bispyribac, cyhalofop, fenoxaprop, halosulfuron, imazethapyr, penoxsulam, quinclorac, and triclopyr) rice herbicides. Although not every tank-mix or weed species was evaluated, the lack of antagonistic interactions herein highlights the flexibility and versatility of this new herbicide. Once florpyrauxifen-benzyl becomes commercially available, it will be beneficial to tank-mix this new herbicide with others without sacrificing efficacy, so as to apply multiple sites of action together and thus lessen the risk for evolution of herbicide resistance.


Sign in / Sign up

Export Citation Format

Share Document