Influence of Increasing Common Ragweed (Ambrosia artemisiifolia) or Common Cocklebur (Xanthium strumarium) Densities on Forage Nutritive Value and Yield in Tall Fescue Pastures and Hay Fields

2011 ◽  
Vol 25 (2) ◽  
pp. 222-229 ◽  
Author(s):  
Kristin K. Rosenbaum ◽  
K. W. Bradley ◽  
Craig A. Roberts

Separate field trials were conducted in 2007 and 2008 to investigate the effects of increasing densities of common ragweed or common cocklebur on total yield and forage nutritive values in tall fescue pastures. Common ragweed densities ranged from 0 to 188 plants m−2, and common cocklebur densities ranged from 0 to 134 plants m−2. Total biomass yields (weeds plus tall fescue) were determined in response to each weed density and species; pure samples of tall fescue, common ragweed, or common cocklebur were also hand collected from each plot at the time of the total biomass harvest. Near-infrared spectroscopy was used to predict crude protein (CP) concentration and in vitro true digestibility (IVTD) of the total harvested biomass, pure tall fescue, and pure weed species in each plot. Results indicate that biomass yields may increase by as much as 5 kg ha−1with each additional common ragweed plant m−2within a tall fescue stand. Additionally, CP concentration of the total harvested biomass, pure weed species, and tall fescue decreased by 0.2 to 0.4 g kg−1with each additional increase in common ragweed or common cocklebur plant per m−2. As weed densities increased, IVTD of pure tall fescue samples increased only minimally (0.04%), regardless of the weed species. An increase in common ragweed density also resulted in the CP concentration of pure samples of common ragweed to decrease by 0.2 g kg−1for each additional plant per m2and by 0.4 g kg−1for each additional common cocklebur per m2. Overall, results from these experiments indicate that plant biomass yield and nutritive values of the total harvested biomass are only marginally influenced by increasing common ragweed or common cocklebur densities.

2010 ◽  
Vol 24 (4) ◽  
pp. 515-522 ◽  
Author(s):  
Kristin K. Payne ◽  
Byron B. Sleugh ◽  
Kevin W. Bradley

Field experiments were conducted from 2007 through 2009 at four locations in Missouri to evaluate the effect of May and August herbicide applications on weed control, total biomass yield, and forage nutritive values. Experiments were conducted in established tall fescue pastures that contained natural infestations of common ragweed and tall ironweed. Treatments consisted of 2,4-D, metsulfuron, aminopyralid, 2,4-D + dicamba, 2,4-D + picloram, aminopyralid + 2,4-D, and 2,4-D + dicamba + metsulfuron. All herbicide treatments provided > 76% control of common ragweed 1 mo after treatment (MAT), except metsulfuron alone which provided ≤ 62% control. August applications provided greater reductions in common ragweed density than May applications the following spring. Few differences in tall ironweed density were observed, but metsulfuron-containing herbicides tended to provide the lowest reduction in tall ironweed stem density the following spring. Biomass yields were generally greater in nontreated compared to herbicide-treated plots. Crude protein (CP) concentration and relative feed value (RFV) were higher in nontreated compared with herbicide-treated biomass. Overall, the poorer nutritive values and lower biomass yields in the herbicide-treated compared with the nontreated biomass may be partially explained by the removal of common ragweed, tall ironweed, and legumes with the herbicide treatments. Pure samples of common ragweed and white clover were greater in nutritive values than pure samples of tall fescue at all June harvests. Results indicate that common ragweed offers nutritive values equivalent to or greater than tall fescue and white clover when harvested in June at the vegetative stage of growth and that the removal of common ragweed and tall ironweed with herbicide applications is not likely to improve forage nutritive values of the total harvested biomass of tall fescue pastures, at least by the season after treatment.


2017 ◽  
Author(s):  
◽  
Zachary Lee Trower

Across the 2015-2016 growing seasons, 43 mixed tall fescue and legume pastures were surveyed to determine the effects of selected soil and forage parameters on the density of individual weed species and overall weed density. The parameters included soil phosphorus (P), potassium (K), magnesium (Mg) and calcium (Ca) concentration, soil pH, cation exchange capacity (CEC), cattle grazing density, total forage groundcover density, tall fescue density, and beneficial legume density, which was comprised of white clover, red clover and annual lespedeza densities. Sampling areas were established in each pasture at a frequency of one representative 20 m2 area per 4 ha of pasture. Once established, survey locations were sampled every 14 days during a period from April through September. Weed density was divided into categories (total, annual broadleaves, perennial broadleaves, and annual grasses) and also by the most common individual weed species encountered. These datasets were then divided into 3 timings, 05 (April-May), 07 (June-July), and 12 (August-September), and then analyzed using regression tree models. Across all weed types and species, forage groundcover density was the main parameter that affected weed density. Soil K, P, and Mg levels also impacted weed density for many life cycles and weed species. Soil K level was the primary parameter that reduced density of common ragweed in the 07 and 12 timeframes, and this is one of the most common weed species encountered in Missouri pastures. Similarly, soil P level was the primary parameter that reduced perennial broadleaf weed density in the 07 and 12 timeframes; when P was greater than 1.5 ppm, there was a 66 and 59% reduction in the density of these species in the 07 and 12 timeframes, respectively. Cattle grazing densities less than1.2 units per acre also resulted in fewer annual grass weeds in pastures. Results from this survey indicate that maximizing the groundcover of beneficial forage species is the most important factor that results in weed density reductions in mixed tall fescue and legume pastures, followed by proper maintenance of soil nutrients like P and K. Weed and representative forage samples were collected from 22 mixed tall fescue and legume pastures during the 2015 and 2016 growing seasons to investigate the seasonal variation in forage quality of 15common pasture weeds in Missouri. Sampling occurred at 14-day intervals throughout the season and began in early April or when emergence of each weed species was observed. Sampling concluded either at plant senescence or mid- to late-September. There was no significant linear relationship between increasing time and crude protein (CP) concentration or digestibility for buckhorn plantain, dandelion, sericea lespedeza, and yellow foxtail, but CP concentration and digestibility declined linearly through the growing season for all other weed species evaluated. Most weed species also had a linear decline in neutral detergent fiber digestibility (NDFD) and a linear increase in neutral detergent fiber (NDF) as the season progressed. When comparing pure weed samples to the representative forage from the same location, CP concentrations in spiny amaranth, woolly croton, annual fleabane, white snakeroot, Pennsylvania smartweed, and vervain species were not significantly different than their representative forage samples at any sampling interval throughout the season. However, CP concentration of common ragweed, lance leaf ragweed, horsenettle, and dandelion were often higher than the representative forage sample for the majority of sampling timings throughout the season while yellow foxtail and ironweed species had significantly lower CP concentration than the representative forage samples from July 26 to August 23.Additionally, digestibility of common ragweed, lanceleaf ragweed, broadleaf plantain, Pennsylvania smartweed, dandelion, and common cocklebur was greater than that of the representative forage sample for the majority of sampling periods throughout the season (P [less than] 0.05). These results can be used to understand how the nutritive value of common weed species changes throughout the season and at what times specific weed species have the potential to influence the overall forage quality in mixed tall fescueand legume pastures.


Author(s):  
A. S. Golubev ◽  
I. P. Borushko ◽  
V. I. Dolzhenko

The use of glyphosate (720-2880 g/h a.i.) and ammonium glufosinate herbicides (375-1500 g/h a.i.) to control of common ragweed (Ambrosia artemisiifolia L.) has been studied in trials (2013-2018) in the vineyards of Rkatsiteli, Liang and Cabernet Sauvignon in Abinsk district of Krasnodar region. Accounting of weeds was done by a quantitative method with counting the number of each weed species in each plot. Counts were performed before the treatment and in 15, 30 and 45 days after spraying. The effi cacy of herbicide was determined in relation to the untreated control and expressed as a percentage. The main evaluation criterion was the eff ectiveness of 100 % in one of the accounts or the average (for all counts) effi ciency of more than 90 %. The results showed that in 95 % of trials spraying of 1440 g/h of glyphosate 1440 g/h of glyphosate (a.i.) and higher ensured processing effi ciency exceeding 90 %. Herbicides such as Roundup, containing 360 g/l of isopropylamine salt, can be recommended for use to control of common ragweed in the application rate 4.0 l/ha. Destruction of all common ragweed observed when using not less than 600 g/h glufosinate ammonium. Thus, Herbicides such as Basta, containing 150 g/l of ammonium glufosinate, to control of common ragweed should be applied by fractional application vegetative weeds (2.5 l/h + 1.5 l/h).


2019 ◽  
Vol 34 (2) ◽  
pp. 164-171
Author(s):  
Gatlin Bunton ◽  
Zach Trower ◽  
Craig Roberts ◽  
Kevin W. Bradley

AbstractDuring the 2015, 2016, and 2017 growing seasons, weed and weed-free mixed tall fescue and legume forage samples were harvested from 29 pastures throughout Missouri for investigation of the nutritive value of 20 common pasture weed species throughout the season. At certain times during the growing season, many broadleaf weed species had greater nutritive values for a given quality parameter as compared with the available weed-free, mixed tall fescue and legume forage harvested from the same location. There were no significant differences in crude protein concentration between the weed-free forage and many weeds throughout the growing season. However, crude protein content of common burdock, common cocklebur, common ragweed, dandelion, horsenettle, and lanceleaf ragweed was greater than that of the corresponding forage sample at multiple collection periods. The digestible neutral detergent fiber (dNDF) content of all broadleaf weeds except lanceleaf ragweed was significantly lower than that of the weed-free forage at all collection periods. Conversely, large crabgrass had significantly greater digestible neutral detergent fiber levels than did the mixed tall fescue forage at all sampling dates. Dandelion and spiny amaranth had greater in vitro true digestibility (IVTD) content than did the forage for the entire growing season. Three perennial weeds—horsenettle, vervains, and late boneset—did not differ in IVTD levels as compared with the mixed tall fescue and legume forage at any collection date. For most summer annual weeds, the trend was toward greater digestibility earlier in the season, with a gradual decline and often lower IVTD by the late summer or early fall. The results of this study will enable producers to make more informed management decisions about the potential benefit or detriment a weed may provide to the overall nutritive value of the pasture system.


Weed Science ◽  
1970 ◽  
Vol 18 (2) ◽  
pp. 206-214 ◽  
Author(s):  
R. P. Upchurch ◽  
F. L. Selman ◽  
H. L. Webster

Relatively pure stands of eight weed species were maintained under field conditions on a Goldsboro loamy sand at Lewiston, North Carolina, for all or part of a 6-year period. Herbicides evaluated as preemergence surface treatments for these species were 2-sec-butyl-4,6-dinitrophenol (dinoseb), isopropyl m-chlorocarbanilate (chloropropham), 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea (diuron), 2-chloro-4,6-bis(ethylamino)-s-triazine (simazine), and 3-amino-2,5-dichlorobenzoic acid (amiben). S-ethyl dipropylthiocarbamate (EPTC) and a,a,a-trifluro-2,6-dinitro-N,N-dipropyl-p-toluidine (trifluralin) were evaluated as preemergence incorporated treatments. The first four herbicides were evaluated in 1961, 1964, and 1966 while the last three were evaluated in 1962, 1963, and 1965. A series of rates was used for each chemical with three replications. With the exception of diuron which failed to control goosegrass (Eleusine indica (L.) Gaertn.), all of the herbicides provided at least a moderate degree of control of goosegrass, smooth crabgrass (Digitaria ischaemum (Schreb.) Muhl.), and redroot pigweed (Amaranthus retroflexus L.) at the respective typical field use rates. In general, trifluralin and amiben gave the best grass control and dinoseb the poorest. None of the herbicides effectively controlled common cocklebur (Xanthium pensylvanicum Wallr.) or ivyleaf morningglory (Ipomoea hederacea (L.) Jacq.). Trifluralin and EPTC did not control Pennsylvania smartweed (Polygonum pensylvanicum L.), common ragweed (Ambrosia artemisiifolia L.), and common lambsquarters (Chenopodium album L.). Chloropropham was ineffective on common ragweed. Simazine, chloropropham, and amiben controlled Pennsylvania smartweed while diuron, simazine, dinoseb, and amiben were especially effective on common lambsquarters. Distinctive patterns of nematode infestations were observed as a function of weed species.


1999 ◽  
Vol 13 (3) ◽  
pp. 542-547 ◽  
Author(s):  
Brent E. Tharp ◽  
Oliver Schabenberger ◽  
James J. Kells

The recent introduction of glufosinate-resistant and glyphosate-resistant crops provides growers with new options for weed management. Information is needed to compare the effectiveness of glufosinate and glyphosate on annual weeds. Greenhouse trials were conducted to determine the response of barnyardgrass (Echinochloa crus-galli), common lambsquarters (Chenopodium album), common ragweed (Ambrosia artemisiifolia), fall panicum (Panicum dichotomiflorum), giant foxtail (Setaria faberi), large crabgrass (Digitaria sanguinalis), and velvetleaf (Abutilon theophrasti) to glufosinate and glyphosate. The response of velvetleaf and common lambsquarters was investigated at multiple stages of growth. Glufosinate and glyphosate were applied to each weed species at logarithmically incremented rates. The glufosinate and glyphosate rates that provided a 50% reduction in aboveground weed biomass, commonly referred to as GR50values, were compared using nonlinear regression techniques. Barnyardgrass, common ragweed, fall panicum, giant foxtail, and large crabgrass responded similarly to glufosinate and glyphosate. Common lambsquarters 4 to 8 cm in height was more sensitive to glufosinate than glyphosate. In contrast, 15- to 20-cm tall-velvetleaf was more sensitive to glyphosate than glufosinate.


Weed Science ◽  
1984 ◽  
Vol 32 (2) ◽  
pp. 185-190 ◽  
Author(s):  
Ronald L. Ritter ◽  
Harold D. Coble

In greenhouse studies, control of common ragweed (Ambrosia artemisiifoliaL. ♯ AMBEL) and common cocklebur (Xanthium pensylvanicumWallr. ♯ XANPE) was achieved whether or not soybeans [Glycine maxL. (Merr.) ‘Ransom’] partially shielded the weeds from foliar applications of acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid}. Excellent control (> 90%) of common ragweed was obtained in the greenhouse 2 and 4 weeks after plant emergence. Best control (> 90%) of common cocklebur was obtained 2 weeks after plant emergence. A simulated rainfall of 0.6 cm occurring 1 min after acifluorfen application did not decrease control or fresh weight of common ragweed in greenhouse studies. The weed control efficiency of acifluorfen on common cocklebur was reduced when the herbicide was applied intermittently within 6 h of the 0.6-cm simulated rainfall. The weed control efficiency of acifluorfen on both weed species was also reduced when the herbicide was applied intermittently within 6 to 12 h of a 1.3-cm simulated rainfall in greenhouse studies. In field studies, 2.5 cm of simulated rainfall within 12 to 24 h after acifluorfen application reduced control of common ragweed.


Weed Science ◽  
1981 ◽  
Vol 29 (6) ◽  
pp. 648-654 ◽  
Author(s):  
David N. Duncan ◽  
William F. Meggitt ◽  
Donald Penner

Absorption, translocation, and metabolism of foliar-applied ethofumesate [(±)-2-ethoxy-2,3-dihydro-3,3-dimethyl-5-benzofuranyl methanesulphonate] were studied to explain field observations showing differences in susceptibility among sugarbeet (Beta vulgarisL.), common ragweed (Ambrosia artemisiifoliaL.), redroot pigweed (Amaranthus retroflexusL.), and common lambsquarters (Chenopodium albumL.). In laboratory studies, two- to four-leaf seedlings of the highly susceptible species, redroot pigweed and common lambsquarter, absorbed greater amounts of14C-ethofumesate from foliar application than the moderately susceptible common ragweed and tolerant sugarbeet. Sugarbeet translocated very little14C from treated foliage to untreated plant tissue. All weed species translocated14C-ethofumesate to untreated leaf tissue when14C-ethofumesate was applied to seedlings at the two-leaf stage. Ethofumesate was translocated basipetally to the stem and root of two-leaf redroot pigweed and common lambsquarter seedlings. A high percentage of the14C was found in the water-soluble fraction in sugarbeet seedlings, indicating inactivation. The amount of metabolites recovered in the non-polar fraction depended on the stage of plant growth. Total photosynthesis and respiration in redroot pigweed was inhibited 4 h after foliar application and did not recover after 96 h. Uptake and evolution of CO2were also inhibited in sugarbeet leaves, but they recovered rapidly, depending on age of plant at treatment. The stage of plant development was the key factor determining species response to foliar treatments of ethofumesate in terms of absorption, metabolism, and total photosynthesis and respiration.


Weed Science ◽  
1978 ◽  
Vol 26 (2) ◽  
pp. 123-127 ◽  
Author(s):  
R. S. Fawcett ◽  
R. G. Harvey

In a 3-yr field study, seven dinitroaniline herbicides controlled all weeds adequately, except for two species. None of them controlled shepherdspurse [Capsella bursa-pastoris (L.) Medic.], and only nitralin [4-(methylsulfonyl)-2,6-dinitro-N,N-dipropylaniline] controlled common ragweed (Ambrosia artemisiifolia L.). EPTC (S-ethyl dipropylthiocarbamate) was included as a standard of comparison and provided satisfactory control of all weed species. Three-year averages of alfalfa (Medicago sativa L.) injury ratings at herbicide rates estimated to be equivalent in biological activity to 0.8 kg/ha and 1.7 kg/ha trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) respectively were: butralin [4-(1,1-dimethylethyl)-N-(1-methylpropyl)-2,6-dinitrobenzenamine] 0% and 3%, benefin (N-butyl-N-ethyl-α,α,α-trifluoro-2,6-dinitro-p-toluidine) 2% and 9%, profluralin [N-(cyclopropylmethyl)-α,α,α-trifluoro-2,6-dinitro-N-propyl-p-toluidine] 5% and 19%, AC92390 (N-sec-butyl-2,6-dinitro-3,4-xylidine) 6% and 17%, trifluralin 6% and 26%, fluchloralin [N-(2-chloroethyl)-2,6-dinitro-N-propyl-4-(trifluoromethyl)aniline] 14% and 45%, and nitralin 18% and 49%. EPTC caused an average 4% injury at 3.4 kg/ha. At equivalent rates to 0.8 kg/ha trifluralin, most treatments caused an increase in first cutting alfalfa yields accompanied by a decrease in weed yields, except in 1974 when few treatments resulted in increased alfalfa yields. Alfalfa recovered from early season injury caused by higher rates of the herbicides, so that total alfalfa yields were usually not reduced compared to the control. Total herbage yields (alfalfa + weeds) were not increased by any treatment, and were sometimes decreased, especially by high rates of the herbicides.


2013 ◽  
Vol 93 (5) ◽  
pp. 799-807 ◽  
Author(s):  
Donald Thompson

Thompson, D. J. 2013. Yield and nutritive value of irrigated tall fescue compared with orchardgrass: in monocultures or mixed with alfalfa. Can. J. Plant Sci. 93: 799–807. Orchardgrass (Dactylis glomerata L.) is commonly grown for irrigated forage production in interior British Columbia. Tall fescue [Schedonorus phoenix (Schop.) Holub.] is also adapted to the area but no comparative trials have been reported. Three varieties of each grass species were grown in monocultures or in mixtures with alfalfa at three irrigated sites throughout southern interior British Columbia. Study objectives included comparing the forage yield and nutritive value of the following groups: (1) tall fescue and orchardgrass monocultures, (2) tall fescue and orchardgrass mixtures with alfalfa and (3) grass-alfalfa mixtures with monocultures. In monoculture, tall fescue yield was 9% greater than orchardgrass (significantly greater yield at 3 of 6 site-years), though forage nutritive values were similar. Mixtures of the two grasses with alfalfa had similar yields, but those containing tall fescue had superior nutritive value. Alfalfa contributed a greater percentage to total yield and had higher survival when mixed with tall fescue. Tall fescue is a viable alternative to orchardgrass for irrigated forage production in monoculture and may be more suitable for mixtures with alfalfa. Our findings demonstrate a functional diversity effect; grass-alfalfa mixtures over-yielded the mean of the alfalfa, orchardgrass, and tall fescue monocultures by 12%.


Sign in / Sign up

Export Citation Format

Share Document