scholarly journals Residual Activity of ACCase-Inhibiting Herbicides on Monocot Crops and Weeds

2018 ◽  
Vol 32 (4) ◽  
pp. 364-370 ◽  
Author(s):  
Zachary D. Lancaster ◽  
Jason K. Norsworthy ◽  
Robert C. Scott

AbstractField experiments were conducted in 2014 and 2015 in Fayetteville, Arkansas, to evaluate the residual activity of acetyl-CoA carboxylase (ACCase)–inhibiting herbicides for monocot crop injury and weed control. Conventional rice, quizalofop-resistant rice, grain sorghum, and corn crops were evaluated for tolerance to soil applications of six herbicides (quizalofop at 80 and 160 g ai ha–1, clethodim at 68 and 136 g ai ha–1, fenoxaprop at 122 g ai ha–1, cyhalofop at 313 g ai ha–1, fluazifop at 210 and 420 g ai ha–1, and sethoxydim at 140 and 280 g ai ha–1). Overhead sprinkler irrigation of 1.3 cm was applied immediately after treatment to half of the plots, and the crops planted into the treated plots at 0, 7, and 14 d after herbicide treatment. In 2014, injury from herbicide treatments increased with activation for all crops evaluated, except for quizalofop-resistant rice. At 14 d after treatment (DAT) in 2014, corn and grain sorghum were injured 19% and 20%, respectively, from the higher rate of sethoxydim with irrigation activation averaged over plant-back dates. Conventional rice was injured 13% by the higher rate of fluazifop in 2014. Quizalofop-resistant rice was injured no more than 4% by any of the graminicides evaluated in either year. In 2015, a rainfall event occurred within 24 h of initiating the experiment; thus, there were no differences between activation via irrigation or by rainfall. However, as in 2014, grain sorghum and corn were injured 16% and 13%, respectively, by the higher rate of sethoxydim, averaged over plant-back dates. All herbicides provided little residual control of grass weeds, mainly broadleaf signalgrass and barnyardgrass. These findings indicate the need to continue allowing a plant-back interval to rice following a graminicide application, unless quizalofop-resistant rice is to be planted. The plant-back interval will vary by graminicide and the amount of moisture received following the application.

2019 ◽  
Vol 34 (4) ◽  
pp. 498-505
Author(s):  
Tameka L. Sanders ◽  
Jason A. Bond ◽  
Benjamin H. Lawrence ◽  
Bobby R. Golden ◽  
Thomas W. Allen ◽  
...  

AbstractRice with enhanced tolerance to herbicides that inhibit acetyl coA carboxylase (ACCase) allows POST application of quizalofop, an ACCase-inhibiting herbicide. Two concurrent field studies were conducted in 2017 and 2018 near Stoneville, MS, to evaluate control of grass (Grass Study) and broadleaf (Broadleaf Study) weeds with sequential applications of quizalofop alone and in mixtures with auxinic herbicides applied in the first or second application. Sequential treatments of quizalofop were applied at 119 g ai ha−1 alone and in mixtures with labeled rates of auxinic herbicides to rice at the two- to three-leaf (EPOST) or four-leaf to one-tiller (LPOST) growth stages. In the Grass Study, no differences in rice injury or control of volunteer rice (‘CL151’ and ‘Rex’) were detected 14 and 28 d after last application (DA-LPOST). Barnyardgrass control at 14 and 28 DA-LPOST with quizalofop applied alone or with auxinic herbicides EPOST was ≥93% for all auxinic herbicide treatments except penoxsulam plus triclopyr. Barnyardgrass control was ≥96% with quizalofop applied alone and with auxinic herbicides LPOST. In the Broadleaf Study, quizalofop plus florpyrauxifen-benzyl controlled more Palmer amaranth 14 DA-LPOST than other mixtures with auxinic herbicides, and control with this treatment was greater EPOST compared with LPOST. Hemp sesbania control 14 DA-LPOST was ≤90% with quizalofop plus quinclorac LPOST, orthosulfamuron plus quinclorac LPOST, and triclopyr EPOST or LPOST. All mixtures except quinclorac and orthosulfamuron plus quinclorac LPOST controlled ivyleaf morningglory ≥91% 14 DA-LPOST. Florpyrauxifen-benzyl or triclopyr were required for volunteer soybean control >63% 14 DA-LPOST. To optimize barnyardgrass control and rice yield, penoxsulam plus triclopyr and orthosulfamuron plus quinclorac should not be mixed with quizalofop. Quizalofop mixtures with auxinic herbicides are safe and effective for controlling barnyardgrass, volunteer rice, and broadleaf weeds in ACCase-resistant rice, and the choice of herbicide mixture could be adjusted based on weed spectrum in the treated field.


2004 ◽  
Vol 18 (3) ◽  
pp. 810-815 ◽  
Author(s):  
Clayton D. Myhre ◽  
Heather A. Loeppky ◽  
F. Craig Stevenson

Alfalfa seed producers have a limited number of herbicide options to manage weed problems. MON-37500 (proposed name sulfosulfuron) is a sulfonylurea herbicide that controls dandelion and quackgrass, two common weeds in alfalfa fields. A study was conducted in two alfalfa fields at Valparaiso and Carrot River, Saskatchewan, Canada, from 1999 to 2001 to evaluate perennial weed control and alfalfa production responses with 0.5×, 1×, and 1.5× label-recommended rates of MON-37500 and also 2,4-DB and hexazinone. MON-37500 applied at the 1× and 1.5× rates at both locations reduced mid-May alfalfa vigor from 100% to between 80 and 90% and increased early-season control of dandelion and quackgrass by about 10 to 40 percentage units, when compared with other herbicide treatments. Improved weed control with 1× and 1.5× MON-37500 rates was sustained into mid-June only at Carrot River and was completely eliminated (100% vigor and 0% weed control), or almost so, by mid-July. MON-37500 did not control Canada thistle. Improved early-season weed control with the 1× MON-37500 rate apparently compensated for the loss of alfalfa vigor at Valparaiso, thus resulting in 27% (57 kg/ha) greater seed yield than with the other herbicide treatments. At Carrot River, hexazinone generally provided levels of weed control similar to MON-37500 but did not injure alfalfa. Consequently, alfalfa yields were highest and the proportion of dead (decaying) seed was least with this treatment. The 0.5× MON-37500 rate often resulted in inferior weed control relative to the 1× and 1.5× rates and never was among the herbicide treatments providing the greatest seed yield. Managing the residual activity of MON-37500 and its negative effect on alfalfa growth, especially at locations with soils having coarse texture and low organic matter content, represents the greatest challenge in making MON-37500 a reliable weed management tool for alfalfa seed producers.


1989 ◽  
Vol 3 (4) ◽  
pp. 621-626 ◽  
Author(s):  
David L. Regehr ◽  
Keith A. Janssen

Research in Kansas from 1983 to 1986 evaluated early preplant (30 to 45 days) and late preplant (10 to 14 days) herbicide treatments for weed control before ridge-till planting in a soybean and sorghum rotation. Control of fall panicum and common lambsquarters at planting time averaged at least 95% for all early preplant and 92% for late preplant treatments. Where no preplant treatment was used, heavy weed growth in spring delayed soil dry-down, which resulted in poor ridge-till planting conditions and reduced plant stands, and ultimately reduced sorghum grain yields by 24% and soybean yields by 12%. Horsenettle population declined significantly, and honeyvine milkweed population increased. Smooth groundcherry populations fluctuated from year to year with no overall change.


2012 ◽  
Vol 26 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Rakesh K. Godara ◽  
Billy J. Williams ◽  
Eric P. Webster ◽  
James L. Griffin ◽  
Donnie K. Miller

Field experiments were conducted in 2006, 2007, and 2008 at the Louisiana State University Agricultural Center's Northeast Research Station near St. Joseph, LA, to evaluate imazosulfuron programs involving rate, application timings, and tank mixes for PRE and POST broadleaf weed control in drill-seeded rice. Imazosulfuron showed residual activity against both Texasweed and hemp sesbania. PRE-applied imazosulfuron at 168 g ai ha−1and higher rates provided 83 to 93% Texasweed control at 4 WAP. At 12 WAP, Texasweed control with 168 g ha−1and higher rates was 92%. Hemp sesbania control with 168 g ha−1and higher rates was 86 to 89% at 4 WAP and 65 to 86% at 12 WAP. Imazosulfuron at 224 g ha−1applied EPOST provided 84 to 93% Texasweed control and 82 to 87% hemp sesbania control, and it was as effective as its tank mixture with bispyribac-sodium. When applied LPOST, four- to five-leaf Texasweed, imazosulfuron alone at 224 g ha−1was not effective against Texasweed and hemp sesbania, but did improve weed control when mixed with bispyribac-sodium at 17.6 g ai ha−1.


2019 ◽  
Vol 33 (03) ◽  
pp. 431-440
Author(s):  
Thomas J. Peters ◽  
Andrew B. Lueck ◽  
Aaron L. Carlson

AbstractSugarbeet growers only recently have combined ethofumesate, S-metolachlor, and dimethenamid-P in a weed control system for waterhemp control. Sugarbeet plant density, visible stature reduction, root yield, percent sucrose content, and recoverable sucrose were measured in field experiments at five environments between 2014 and 2016. Sugarbeet stand density and stature reduction occurred in some but not all environments. Stand density was reduced with PRE application of S-metolachlor at 1.60 kg ai ha–1 and S-metolachlor at 0.80 kg ha–1 + ethofumesate at 1.68 kg ai ha–1 alone or followed by POST applications of dimethenamid-P at 0.95 kg ai ha–1. Sugarbeet visible stature was reduced when dimethenamid-P followed PRE treatments. Stature reduction was greatest with ethofumesate at 1.68 or 4.37 kg ha–1 PRE and S-metolachlor at 0.80 kg ha–1 + ethofumesate at 1.68 kg ha–1 PRE followed by dimethenamid-P at 0.95 kg ha–1 POST. Stature reduction ranged from 0 to 32% 10 d after treatment (DAT), but sugarbeet recovered quickly and visible injury was negligible 23 DAT. Although root yield and recoverable sucrose were similar across herbicide treatments and environments, we caution against the use of S-metolachlor at 0.80 kg ha–1 + ethofumesate at 1.68 kg ai ha–1 PRE followed by dimethenamid-P at 0.95 kg ha–1 in sugarbeet.


1991 ◽  
Vol 5 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Charles T. Bryson ◽  
Edward M. Croom

Annual wormwood has been cultivated on a small scale for production of the artemisinin class of antimalarial drugs in sufficient quantities for preclinical and clinical trials. Large scale cultivation will require a reliable, efficient crop production system. Production systems using 32 herbicides alone or in combinations were evaluated in growth chamber, greenhouse, and field experiments at Stoneville, MS from 1985 through 1988. The herbicide treatments that provided the best weed control were (A) metolachlor at 2.2 kg ai ha-1preemergence (PRE), (B) chloramben at 2.2 kg ai ha-1(PRE), or (C) trifluralin at 0.6 kg ai ha-1preplant soil incorporated (PPI) followed by fluazifop at 0.2 + 0.2 kg ai ha-1postemergence broadcast (POST) and acifluorfen at 0.6 kg ai ha-1(POST). These herbicide production systems provided excellent weed control (≥85%) and minimal crop injury (≤10%) with no effect on crop height or weight at harvest. Production of artemisinin was not reduced by herbicide treatments A, B, and C in 1987 and treatments B and C in 1988 when compared with the hand-weeded plots.


2010 ◽  
Vol 24 (3) ◽  
pp. 219-225 ◽  
Author(s):  
D. Shane Hennigh ◽  
Kassim Al-Khatib ◽  
Mitchell R. Tuinstra

Postemergence herbicides to control grass weeds in grain sorghum are limited. Acetolactate synthase (ALS) –inhibiting herbicides are very effective at controlling many grass species in many crops; unfortunately, use of ALS-inhibiting herbicides is not an option in conventional grain sorghum because of its susceptibility to these herbicides. With the development of ALS-resistant grain sorghum, several POST ALS-inhibiting herbicides can be used to control weeds in grain sorghum. Field experiments were conducted in 2007 and 2008 to evaluate the efficacy of tank mixtures of nicosulfuron + rimsulfuron applied alone or in combination with bromoxynil, carfentrazone–ethyl, halosulfuron + dicamba, prosulfuron, 2,4-D, or metsulfuron methyl + 2,4-D. In addition, these treatments were applied with and without atrazine. Nicosulfuron + rimsulfuron controlled barnyardgrass, green foxtail, and giant foxtail 99, 86, and 91% 6 wk after treatment (WAT), respectively. A decrease in annual grass control was observed when nicosulfuron + rimsulfuron was tank mixed with some broadleaf herbicides, although the differences were not always significant. In addition, nicosulfuron + rimsulfuron controlled velvetleaf and ivyleaf moringglory 64 and 78% 6 WAT, respectively. Control of velvetleaf was improved when nicosulfuron + rimsulfuron was tank mixed with all broadleaf herbicides included in this study with the exception of atrazine, bromoxynil, and prosulfuron + atrazine. Control of ivyleaf morningglory was improved when nicosulfuron + rimsulfuron was tank mixed with all of the herbicides included in this study with the exception of metsulfuron methyl + 2,4-D. Weed populations and biomass were lower when nicosulfuron + rimsulfuron were applied with various broadleaf herbicides than when it was applied alone. Grain sorghum yield was greater in all herbicide treatments than in the weedy check, with the highest grain yield from nicosulfuron + rimsulfuron + prosulfuron. This research showed that postemergence application of nicosulfuron + rimsulfuron effectively controls grass weeds, including barnyardgrass, green foxtail, and giant foxtail. The research also showed that velvetleaf and ivyleaf morningglory control was more effective when nicosulfuron + rimsulfuron were applied with other broadleaf herbicides.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 971D-972
Author(s):  
Harlene M. Hatterman-Valenti ◽  
Carrie E. Schumacher ◽  
Collin P. Auwarter ◽  
Paul E. Hendrickson

Field studies were conducted at Absaraka, Carrington, and Oakes, N.D., in 2005 to evaluate early season broadleaf weed control and onion (Allium cepa L.) injury with herbicides applied preemergence to the crop. DCPA is a common preemergence herbicide used in onion. However, DCPA can be uneconomical in most high-weed situations, or the usage may be restricted due to possible groundwater contamination. Potential substitutes evaluated were bromoxynil, dimethenamid-P, and pendimethalin. Main broadleaf weeds were redroot pigweed (Amaranthus retroflexus L.) and common lambsquarters (Chenopodium album L.). In general, all herbicides, except bromoxynil, provided acceptable broadleaf weed control 4 weeks after treatment. The highest herbicide rate provided greater weed control compared with the lowest rate for each herbicide. However, onion height was also reduced with the highest herbicide rate. In addition, the two highest rates of dimethenamid-P reduced the onion stand compared with the untreated. A postemergence application of bromoxynil + oxyfluorfen + pendimethalin to onion at the four- to five-leaf stage controlled the few broadleaf weeds that escaped the preemergence treatments and provided residual control of mid- and late-season germinating broadleaf weeds at two of the three locations. Intense germination of redroot pigweed during July at the Oakes location reduced onion yield with all treatments compared with the hand-weeded check. In contrast, total onion yields with all herbicide treatments except the high rate of dimethenamid-P were similar to the hand-weeded check at Absaraka and Carrington.


Author(s):  
Meijun Guo ◽  
Xi-e Song ◽  
Jie Shen ◽  
Jianming Wang ◽  
Xiatong Zhao ◽  
...  

Foxtail millet (Setaria italic [L.] P. Beauv.) is an important food and fodder crop that is cultivated worldwide. However, weeds severely inhibit the growth of spring foxtail millet, and no suitable herbicide or method is available for weed control in foxtail millet fields. Field experiments were conducted to evaluate the efficacy of various herbicides and their safety toward hybrid foxtail millet, that is, ‘Zhangzagu 10’. The present study was conducted using seven herbicides applied by precision orientation spraying between plastic mulches in a foxtail millet field. All herbicide treatments exhibited no significant difference on foxtail millet shoot and root biomass. No difference in grain yield was observed among herbicide treatments, including MCPA (2-methyl-4-chlorophenoxyacetic acid), mesotrione, acetochlor, trifluralin, and pendimethalin, at the recommended dosage in field efficacy evaluation trial. For the same herbicide, the tendency of weed control increased with the increase in herbicide concentration. Following this finding, all herbicides applied at the highest dosage controlled weeds by 92.06% compared with the other treatments utilizing lower concentration. At the same concentration level, mesotrione controlled all weed populations was the highest observed among all herbicides, followed by prometryne and MCPA. Mesotrione controlled all weeds by at least 76.85%, exhibiting the highest weed injury among the herbicides and satisfying the requirement for weed species control. Finally, comprehensive analyses showed that mesotrione at 0.8 L ha-1, yielded the highest comprehensive evaluation value in foxtail millet field. Thus, this herbicide can be a good option in controlling weeds in foxtail millet field. This new model can aid in protecting hybrid ‘Zhangzagu 10’ foxtail millet seeds or seedlings against herbicide damage and is a good option in expanding the application range of herbicide in foxtail millet.


1992 ◽  
Vol 6 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Stacey A. Bruff ◽  
David R. Shaw

Field experiments were conducted in 1989 and 1990 on silty clay and sandy loam soils to evaluate weed control and soybean yield with early-April preplant incorporation of selective herbicides in stale seedbed soybean followed by non-selective weed control measures at planting. Metribuzin applied PPI early followed by chlorimuron POST coupled with either glyphosate or paraquat PRE controlled sicklepod, pitted morningglory, and hemp sesbania to the same extent of that treatment applied PPI at planting. All stale seedbed treatments with POST applications and glyphosate, paraquat, or tillage at planting controlled pitted morningglory over 70%. However, imazaquin or metribuzin applied PPI early without a POST treatment controlled sicklepod and pitted morningglory poorly. Frequently, applying PPI herbicides at planting increased control compared with early PPI applications, but this was overcome by POST treatments. Early stale seedbed applications of metribuzin did not result in more than 60% control of hemp sesbania, whereas metribuzin applied PPI at planting controlled over 85%. However, metribuzin plus chlorimuron controlled hemp sesbania at least 74%, regardless of application timing or tillage method, whereas no imazaquin treatment achieved over 65% control. All stale seedbed herbicide treatments increased soybean yield compared with the untreated stale seedbed check. Selective herbicide treatments with either non-selective herbicide in a stale seedbed program resulted in equivalent yield to PPI at planting treatments most often, except with metribuzin.


Sign in / Sign up

Export Citation Format

Share Document