The effect of changeable gravity field on the stability of convection in a porous layer filled with nanofluid: Brinkman model

Author(s):  
Darbhasayanam Srinivasacharya ◽  
Dipak Barman
2013 ◽  
Vol 5 (3) ◽  
pp. 172-191 ◽  
Author(s):  
Gangadharaiah Y. H. ◽  
Suma S. P ◽  
Ananda K.

The effect of vertical throughflow and variable gravity field on the onset of penetrative convection simulated via internal heating in a porous medium is studied. Flow in the porous medium is governed by Forchheimer-extended Darcy equation. The boundaries are considered to be rigid, however permeable, and insulated to temperature perturbations. The eigen value problem is solved using a regular perturbation technique with wave number as a perturbation parameter. The variable gravity parameter, the direction of throughflow and the presence of volumetric internal heat source in a porous layer play a decisive role on the stability characteristics of the system. In addition, the influence of Prandtl number arising due to throughflow is also emphasized on the stability of the system. It is observed that both stabilizing and destabilizing factors can be enhanced due to the simultaneous presence of a volumetric source, gravity field and vertical throughflow so that a more precise control (suppress or augment) of thermal convective instability in a layer of porous medium is possible.


1990 ◽  
Vol 112 (3) ◽  
pp. 685-689 ◽  
Author(s):  
N. Rudraiah ◽  
M. S. Malashetty

The stability of a Boussinesq fluid-saturated horizontal porous layer heated from below is examined when the applied temperature gradient is the sum of a steady component and a time-dependent sinusoidal component. The Brinkman model is employed and only infinitesimal disturbances are considered. A perturbation solution as a function of the applied field is obtained. The critical Rayleigh number is obtained for several cases depending on the frequency of oscillations and it is found that it is possible to advance or delay the onset of convection by thermal modulation of the wall temperature. The Darcy limit and viscous flow limit are obtained as degenerate cases.


1998 ◽  
Vol 4 (2) ◽  
pp. 73-90 ◽  
Author(s):  
Peter Vadasz ◽  
Saneshan Govender

The stability and onset of two-dimensional convection in a rotating fluid saturated porous layer subject to gravity and centrifugal body forces is investigated analytically. The problem corresponding to a layer placed far away from the centre of rotation was identified as a distinct case and therefore justifying special attention. The stability of a basic gravity driven convection is analysed. The marginal stability criterion is established in terms of a critical centrifugal Rayleigh number and a critical wave number for different values of the gravity related Rayleigh number. For any given value of the gravity related Rayleigh number there is a transitional value of the wave number, beyond which the basic gravity driven flow is stable. The results provide the stability map for a wide range of values of the gravity related Rayleigh number, as well as the corresponding flow and temperature fields.


Author(s):  
C. Israel-Cookey ◽  
L. Ebiwareme ◽  
E. Amos

In this research article, the effect of Vadasz number on magnetoconvection in a Darcy Porous Layer with concentration based internal heating is studied. The flow is governed by the Oberbeck-Boussineq model for Newtonian fluid. The stability analysis method based on the perturbation of infinitesimal amplitude is carried out using the normal mode analysis. The onset criterion for both the stationary and oscillatory convection on the stability of system is obtained. The analysis examines the effects of pertinent parameters on the stability of the system: magnetic field parameter, solutal Rayleigh number, Lewis number and Vadasz number. The result show that, internal heat parameter,  and Lewis number, , hastens the onset of instability in the system, whereas magnetic field, , Vadasz number,  and solutal Rayleigh number,  delay the onset of instability.


2021 ◽  
pp. 851-861
Author(s):  
S. Kiran ◽  
Y. H. Gangadharaiah ◽  
H. Nagarathnamma ◽  
R. Padmavathi

2012 ◽  
Vol 67 (1-2) ◽  
pp. 1-9 ◽  
Author(s):  
Beer S. Bhadauria ◽  
Atul K. Srivastava ◽  
Nirmal C. Sacheti ◽  
Pallath Chandran

The present paper deals with a thermal instability problem in a viscoelastic fluid saturating an anisotropic porous medium under gravity modulation. To find the gravity modulation effect, the gravity field is considered in two parts: a constant part and an externally imposed time-dependent periodic part. The time-dependent part of the gravity field, which can be realized by shaking the fluid, has been represented by a sinusoidal function. Using Hill’s equation and the Floquet theory, the convective threshold has been obtained. It is found that gravity modulation can significantly affect the stability limits of the system. Further, we find that there is a competition between the synchronous and subharmonic modes of convection at the onset of instability. Effects of various parameters on the onset of instability have also been discussed.


Author(s):  
K. Gautam ◽  
P. A. L. Narayana

Carbon dioxide (CO 2 ) sequestration in deep saline aquifers is considered to be one of the most promising solutions to reduce the amount of greenhouse gases in the atmosphere. As the concentration of dissolved CO 2 increases in unsaturated brine, the density increases and the system may ultimately become unstable, and it may initiate convection. In this article, we study the stability of convection in an anisotropic horizontal porous layer, where the solute is assumed to decay via a first-order chemical reaction. We perform linear and nonlinear stability analyses based on the steady-state concentration field to assess neutral stability curves as a function of the anisotropy ratio, Damköhler number and Rayleigh number. We show that anisotropy in permeability and solutal diffusivity play an important role in convective instability. It is shown that when solutal horizontal diffusivity is larger than the vertical diffusivity, varying the ratio of vertical to horizontal permeabilities does not significantly affect the behaviour of instability. It is also noted that, when horizontal permeability is higher than the vertical permeability, varying the ratio of vertical to horizontal solutal diffusivity does have a substantial effect on the instability of the system when the reaction rate is dominated by the diffusion rate. We used the Chebyshev-tau method coupled with the QZ algorithm to solve the eigenvalue problem obtained from both the linear and nonlinear stability theories.


Sign in / Sign up

Export Citation Format

Share Document