scholarly journals Effect of Vadasz Number on Magnetoconvection in a Darcy Porous Layer with Concentration Based Internal Heating

Author(s):  
C. Israel-Cookey ◽  
L. Ebiwareme ◽  
E. Amos

In this research article, the effect of Vadasz number on magnetoconvection in a Darcy Porous Layer with concentration based internal heating is studied. The flow is governed by the Oberbeck-Boussineq model for Newtonian fluid. The stability analysis method based on the perturbation of infinitesimal amplitude is carried out using the normal mode analysis. The onset criterion for both the stationary and oscillatory convection on the stability of system is obtained. The analysis examines the effects of pertinent parameters on the stability of the system: magnetic field parameter, solutal Rayleigh number, Lewis number and Vadasz number. The result show that, internal heat parameter,  and Lewis number, , hastens the onset of instability in the system, whereas magnetic field, , Vadasz number,  and solutal Rayleigh number,  delay the onset of instability.

Fluids ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 124
Author(s):  
Saneshan Govender

Flow and heat transfer in a horizontal porous layer subjected to internal heat generation and g-jitter is considered for the Dirichlet thermal boundary condition. A linear stability analysis is used to determine the convection threshold in terms of the critical Rayleigh number. For the low amplitude, high frequency approximation, the results show that vibration has a stabilizing effect on the onset of convection when the porous layer is heated from below. When the porous layer is cooled from below and heated from above, the vibration has a destabilizing effect in the presence of internal heat generation. It is also demonstrated that when the top and bottoms walls are cooled and rigid/impermeable, the critical Rayleigh number is infinitely large and conduction is the only possible mode of heat transfer. The impact of increasing the Vadasz number is to stabilize the convection, in addition to reducing the transition point from synchronous to subharmonic solutions.


1998 ◽  
Vol 4 (2) ◽  
pp. 73-90 ◽  
Author(s):  
Peter Vadasz ◽  
Saneshan Govender

The stability and onset of two-dimensional convection in a rotating fluid saturated porous layer subject to gravity and centrifugal body forces is investigated analytically. The problem corresponding to a layer placed far away from the centre of rotation was identified as a distinct case and therefore justifying special attention. The stability of a basic gravity driven convection is analysed. The marginal stability criterion is established in terms of a critical centrifugal Rayleigh number and a critical wave number for different values of the gravity related Rayleigh number. For any given value of the gravity related Rayleigh number there is a transitional value of the wave number, beyond which the basic gravity driven flow is stable. The results provide the stability map for a wide range of values of the gravity related Rayleigh number, as well as the corresponding flow and temperature fields.


2013 ◽  
Vol 353-356 ◽  
pp. 2580-2585 ◽  
Author(s):  
Mo Li Zhao ◽  
Shao Wei Wang ◽  
Qiang Yong Zhang

The linear stability of triply diffusive convection in a binary Maxwell fluid saturated porous layer is investigated. Applying normal mode analysis , the criterion for the onset of stationary and oscillatory convection is obtained. The modified Darcy-Maxwell model is used as the analysis model. This allows us to make a thorough investigation of the processes of viscoelasticity and diffusions that causes the convection to set in through oscillatory rather than stationary. The effects of the parameters of Vadasz number, normalized porosity parameter, relaxation parameter, Lewis number and solute Rayleigh number are presented.


2015 ◽  
Vol 9 (2) ◽  
pp. 63-69 ◽  
Author(s):  
Ramesh Chand ◽  
Gian Chand Rana

AbstractDouble diffusive convection in a horizontal layer of nanofluid in the presence of uniform vertical magnetic field with Soret effect is investigated for more realistic boundary conditions. The flux of volume fraction of nanoparticles is taken to be zero on the isothermal boundaries. The normal mode method is used to find linear stability analysis for the fluid layer. Oscillatory convection is ruled out because of the absence of the two opposing buoyancy forces. Graphs have been plotted to find the effects of various parameters on the stationary convection and it is found that magnetic field, solutal Rayleigh number and nanofluid Lewis number stabilizes fluid layer, while Soret effect, Lewis number, modified diffusivity ratio and nanoparticle Rayleigh number destabilize the fluid layer.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
S. Govender

We consider vibration effects on the classical Rayleigh–Be’nard problem and the classical Vadasz (1994, “Stability of Free Convection in a Narrow Porous Layer Subject to Rotation,” Int. Commun. Heat Mass Transfer, 21, pp. 881–890) problem, which includes rotation of a vertical porous layer about the z-axis. In particular, we focus on the influence of the Vadasz number on vibration for small to moderate and large Vadasz numbers. For small to moderate Vadasz numbers, we develop an analogy between the Vadasz problem (Vadasz, 1994, “Stability of Free Convection in a Narrow Porous Layer Subject to Rotation,” Int. Commun. Heat Mass Transfer, 21, pp. 881–890) placed far away from the axis of rotation and classical Rayleigh–Be’nard problem, both of which include the effects of vibration. It is shown here that the stability criteria are identical to the Rayleigh–Be’nard problem with vibration when g∗=ω∗2X0∗. The analysis for the large Vadasz number scaling indicates that a frozen time approximation is appropriate where the effect of vibration is modeled as small variations in the Rayleigh number definition.


2014 ◽  
Vol 24 (8) ◽  
pp. 1715-1735 ◽  
Author(s):  
Rtibi Ahmed ◽  
Hasnaoui Mohammed ◽  
Amahmid Abdelkhalk

Purpose – The purpose of this paper is to study analytically and numerically the effect of a transverse magnetic field on the separation of species induced in an inclined rectangular porous cavity saturated with an electrically conducting mixture. Design/methodology/approach – The porous layer is assumed homogeneous and submitted from its long sides to uniform heat fluxes and to a magnetic field of strength B. The Darcy model combined with the Boussinesq approximation are used to study the heat and solute transfer in the medium. An analytical solution is developed on the basis of the parallel flow approximation. Numerical simulations are also performed in order to validate the analytical solution. The controlling parameters of this problem are the thermal Rayleigh number, the inclination of the enclosure, the separation parameter, the Hartmann number and the Lewis number. Findings – For given values of the thermal Rayleigh number, the inclination of the enclosure, the separation parameter and the Lewis number, there is an optimal magnetic field which leads to a maximum of separation. At relatively high Rayleigh numbers, where convection destroys the separation process, it is possible, with an optimal choice of the Hartman number, to recover a good level of separation. Research limitations/implications – Since the problem is governed by several parameters (five parameters), only the Darcy model was used in this study instead of the Darcy-Brinkman extended model even if the latter model allows to cover the pure fluid and Darcy porous media as limiting cases. Practical implications – In separation experiments, it is very difficult technically to work with small Rayleigh numbers due to technical difficulties. However, the process of separations is canceled at high Rayleigh number by the strength of convection which causes a mixing in the binary mixture. This study shows that, by using adequate combinations of the controlling parameters, it becomes possible to reach a good level of separation even at relatively high Rayleigh numbers. Originality/value – Optimum choice of the magnetic field and the inclination of the cavity may lead to a good level of the separation process. For large Lewis numbers, the separation vanishes far above and far below the optimal Ha. However, for small Lewis numbers, an important level of separation is maintained for any Ha located below the optimal value of the latter parameter.


2021 ◽  
Vol 39 (3) ◽  
pp. 775-786
Author(s):  
Avula Benerji Babu ◽  
Gundlapally Shiva Kumar Reddy ◽  
Nilam Venkata Koteswararao

In the present paper, linear and weakly nonlinear analysis of magnetoconvection in a rotating fluid due to the vertical magnetic field and the vertical axis of rotation are presented. For linear stability analysis, the normal mode analysis is utilized to find the Rayleigh number which is the function of Taylor number, Magnetic Prandtl number, Thermal Prandtl number and Chandrasekhar number. Also, the correlation between the Rayleigh number and wave number is graphically analyzed. The parameter regimes for the existence of pitchfork, Takens-Bogdanov and Hopf bifurcations are reported. Small-amplitude modulation is considered to derive the Newell-Whitehead-Segel equation and using its phase-winding solution, the conditions for the occurrence of Eckhaus and zigzag secondary instabilities are obtained. The system of coupled Landau-Ginzburg equations is derived. The travelling wave and standing wave solutions for the Newell-Whitehead-Segel equation are also presented. For, standing waves and travelling waves, the stability regions are identified.


Author(s):  
Dhananjay Yadav

In this article, the joint effect of pulsating throughflow and magnetic field on the onset of convective instability in a nanofluid layer, bounded in a Hele-Shaw cell is presented within the context of linear stability theory and frozen profile approach. The model utilized for nanofluid combines the impacts of Brownian motion and thermophoresis, while for Hele-Shaw cell, Hele-Shaw model is considered. The Galerkin technique is utilized to solve the eigenvalue problem. The outcome of the important parameters on the stability framework is examined analytically. It is observed that the pulsating throughflow and magnetic field have both stabilizing effects. The impact of increasing the Hele-Shaw number [Formula: see text], the modified diffusive ratio [Formula: see text] and the nanoparticle Rayleigh number [Formula: see text] is to quicken the convective motion, while the Lewis number [Formula: see text] has dual impact on the stability framework in the existence of pulsating throughflow. It is also established that the oscillatory mode of convective motion is possible only when the value of the magnetic Prandtl number [Formula: see text] is not greater than unity.


Sign in / Sign up

Export Citation Format

Share Document