Dental Drug-Delivery Devices: Local and Sustained-Release Applications

Author(s):  
Doron Steinberg ◽  
Michael Friedman
2019 ◽  
Vol 24 (8) ◽  
pp. 1694-1700 ◽  
Author(s):  
Yiqi Cao ◽  
Karen E. Samy ◽  
Daniel A. Bernards ◽  
Tejal A. Desai

Author(s):  
Kamble Ravindra K. ◽  
Chauhan Chetan S. ◽  
Kamble Priyadarshani R. ◽  
Naruka Pushpendra S.

The main aim of the present work was to develop the microcapsules of tramadol hydrochloride for the oral sustained release drug delivery. Tramadol hydrochloride a BCS class I drug a centrally acting synthetic analgesic was complexed with Indion 254 ion exchange resin. The microcapsules were prepared by encapsulating the prepared resinates by o/o solvent evaporation technique. In the investigation 32 full factorial design was used to investigate the joint influence of two formulation variable amount of eudragit RS 100 and plasticized PEG 400. The results of multiple linear regression analysis indicated that for obtaining a sustained release drug delivery the optimum concentrations of both the plasticizer and coating solution to be used. The factorial models were used to prepare optimized microcapsules and optimized formulations showed sustained release profiles for the extended period of more than 12 hrs. From the present investigations concluded that resinate microcapsules of highly water soluble drug can provide controlled release of drug for extended period.Key Words: Tramadol hydrochloride, ion exchange resinate, microcapsules, sustained release


2020 ◽  
Vol 23 (15) ◽  
Author(s):  
Ritika Puris ◽  
Chandan Sharma ◽  
Dr. Manish Goswami

2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2019 ◽  
Vol 16 (3) ◽  
pp. 258-265
Author(s):  
Kei Takahashi ◽  
Tomomi Masuda ◽  
Mitsunori Harada ◽  
Tadashi Inoue ◽  
Shinsuke Nakamura ◽  
...  

Objective: This study aimed to examine whether DC101 (anti-VEGFR2 antibody)- modified micelles have applications as novel drug delivery devices, which allow small molecule antiangiogenic agents to deliver to angiogenic sites on a murine laser-induced choroidal neovascularization (CNV) model. Materials and Method: CNV was induced by photocoagulation on the unilateral eye of each mouse under anesthesia. Immediately after laser coagulation, E7974-loaded DC101-modified micelles and motesanib-loaded DC101-modified micelles were intravitreally administrated. Two weeks after photocoagulation, CNV was visualized using fluorescein-conjugated dextran (MW=2,000 kDa), and the CNV area was measured in retinal pigment epithelium (RPE)-choroidal flat mounts. Results: Intravitreal administration of both DC101-modified micelles loaded with E7974 at 2 µM and motesanib at 2 µM significantly reduced CNV area in the murine laser-induced CNV model at a clearly lower concentration than the effective dose of each agent. Conclusion: These results suggest that DC101-modified micelle might be effective drug carrier system for treating CNV and other ocular angiogenic diseases.


2020 ◽  
Vol 5 (3) ◽  
pp. 224-235
Author(s):  
Harshal A. Pawar ◽  
Bhagyashree D. Bhangale

Background: Lipid based excipients have increased acceptance nowadays in the development of novel drug delivery systems in order to improve their pharmacokinetic profiles. Drugs encapsulated in lipids have enhanced stability due to the protection they experience in the lipid core of these nano-formulations. Phytosomes are newly discovered drug delivery systems and novel botanical formulation to produce lipophilic molecular complex which imparts stability, increases absorption and bioavailability of phytoconstituent. Curcumin, obtained from turmeric (Curcuma longa), has a wide range of biological activities. The poor solubility and wettability of curcumin are responsible for poor dissolution and this, in turn, results in poor bioavailability. To overcome these limitations, the curcumin-loaded nano phytosomes were developed to improve its physicochemical stability and bioavailability. Objective: The objective of the present research work was to develop nano-phytosomes of curcumin to improve its physicochemical stability and bioavailability. Methods: Curcumin-loaded nano phytosomes were prepared by using phospholipid Phospholipon 90 H using a modified solvent evaporation method. The developed curcumin nano phytosomes were evaluated by particle size analyzer and differential scanning calorimetry (DSC). Results: Results indicated that phytosomes prepared using curcumin and lipid in the ratio of 1:2 show good entrapment efficiency. The obtained curcumin phytosomes were spherical in shape with a size less than 100 nm. The prepared nano phytosomal formulation of curcumin showed promising potential as an antioxidant. Conclusion: The phytosomal complex showed sustained release of curcumin from vesicles. The sustained release of curcumin from phytosome may improve its absorption and lowers the elimination rate with an increase in bioavailability.


Sign in / Sign up

Export Citation Format

Share Document