INFLUENCE OF SURFACE TENSION FORCES ON FILMWISE CONDENSATION INTENSITY

Author(s):  
Vasily Buz ◽  
Konstantin Goncharov ◽  
Henry F. Smirnov
1990 ◽  
Vol 69 (1) ◽  
pp. 74-85 ◽  
Author(s):  
D. P. Gaver ◽  
R. W. Samsel ◽  
J. Solway

We studied airway opening in a benchtop model intended to mimic bronchial walls held in apposition by airway lining fluid. We measured the relationship between the airway opening velocity (U) and the applied airway opening pressure in thin-walled polyethylene tubes of different radii (R) using lining fluids of different surface tensions (gamma) and viscosities (mu). Axial wall tension (T) was applied to modify the apparent wall compliance characteristics, and the lining film thickness (H) was varied. Increasing mu or gamma or decreasing R or T led to an increase in the airway opening pressures. The effect of H depended on T: when T was small, opening pressures increased slightly as H was decreased; when T was large, opening pressure was independent of H. Using dimensional analysis, we found that the relative importance of viscous and surface tension forces depends on the capillary number (Ca = microU/gamma). When Ca is small, the opening pressure is approximately 8 gamma/R and acts as an apparent “yield pressure” that must be exceeded before airway opening can begin. When Ca is large (Ca greater than 0.5), viscous forces add appreciably to the overall opening pressures. Based on these results, predictions of airway opening times suggest that airway closure can persist through a considerable portion of inspiration when lining fluid viscosity or surface tension are elevated.


Author(s):  
Fabrizio Pistani ◽  
Angelo Olivieri ◽  
Emilio Campana

When model experiments are performed the viscous and surface tension forces are not scaled accordingly. Thus not all of the features of the flow can be satisfactorily reproduced at model scale. A comparative set of experiments for measuring the model resistance, the free surface elevation and the flow velocity in the near field, have been carried out for models of different scales for evaluating the influence of the dimensions in reproducing the complete wave breaking dynamics. The resistance curves of the models show that the scale effect is present both for low and high speeds. Comparison of the averaged surface elevation reveals that the largest model possess already some of the full scale features. The comparison of the flow velocity fields highlights substantial differences among the models in the formation of the vortical structures. The influence of these vortices on the free surface is discussed and a correlation with surface scars is proposed.


2008 ◽  
Vol 6 (1) ◽  
pp. 63-75 ◽  
Author(s):  
Cheng Lin ◽  
Fangang Tseng ◽  
Heng-Chuan Kan ◽  
Ching-Chang Chieng

1950 ◽  
Vol 40 (1-2) ◽  
pp. 134-142 ◽  
Author(s):  
E. C. Allberry

1. The attraction between spheres, due to surface tension forces, in a lenticular drop between them is calculated for spheres in contact and at increasing separations up to the point of rupture of the drop. Hence the work of separation of the spheres is calculated.2. Experimental measurements confirm the validity of these calculations, down to very small drop sizes, where it is likely that the failure is in the experimental method. As predicted by Fisher, the force decreases with increasing drop size, while the work of separation increases. Since, however, it is shown that the smaller lenticels are more easily ruptured, no discrimination is provided between the differing explanations of Haines and Fisher of measurements made with the Atterberg apparatus for measurement of soil cohesion.An experimental verification of the validity of Fisher's calculation of the pressure deficiency inside the drop is also given.3. It is pointed out that these results depend on the geometry of the system; types of contact other than that of spheres will show different behaviour. Hence generalizations about the behaviour of a real soil, based on an idealized soil of packed spheres, may lead to erroneous conclusions.


2008 ◽  
Vol 614 ◽  
pp. 173-195 ◽  
Author(s):  
ALBERTO DE LÓZAR ◽  
ANNE JUEL ◽  
ANDREW L. HAZEL

The steady propagation of an air finger into a fluid-filled tube of uniform rectangular cross-section is investigated. This paper is primarily focused on the influence of the aspect ratio, α, on the flow properties, but the effects of a transverse gravitational field are also considered. The three-dimensional interfacial problem is solved numerically using the object-oriented multi-physics finite-element library oomph-lib and the results agree with our previous experimental results (de Lózar et al. Phys. Rev. Lett. vol. 99, 2007, article 234501) to within the ±1% experimental error.At a fixed capillary number Ca (ratio of viscous to surface-tension forces) the pressure drops across the finger tip and relative finger widths decrease with increasing α. The dependence of the wet fraction m (the relative quantity of liquid that remains on the tube walls after the propagation of the finger) is more complicated: m decreases with increasing α for low Ca but it increases with α at high Ca. Our results also indicate that the system is approximately quasi-two-dimensional for α ≥ 8, when we obtain quantitative agreement with McLean & Saffman's two-dimensional model for the relative finger width as a function of the governing parameter 1/B = 12α2Ca. The action of gravity causes an increase in the pressure drops, finger widths and wet fractions at fixed capillary number. In particular, when the Bond number (ratio of gravitational to surface-tension forces) is greater than one the finger lifts off the bottom wall of the tube leading to dramatic increases in the finger width and wet fraction at a given Ca.For α ≥ 3 a previously unobserved flow regime has been identified in which a small recirculation flow is situated in front of the finger tip, shielding it from any contaminants in the flow. In addition, for α ≳ 2 the capillary number, Cac, above which global recirculation flows disappear has been observed to follow the simple empirical law: Cac2/3α = 1.21.


1980 ◽  
Vol 100 (4) ◽  
pp. 785-800 ◽  
Author(s):  
J. G. Andrews ◽  
D. R. Atthey ◽  
J. G. Byatt-Smith

The shape of the liquid/gas interface of a weld pool is determined by the balance of gravitational and surface tension forces. Equilibrium profiles and stability criteria are derived for vertical and horizontal situations.


Sign in / Sign up

Export Citation Format

Share Document