FORMATION OF PLATINUM SILICIDE DURING RAPID THERMAL PROCESSING OF THE PLATINUM- SILICON SYSTEM: MICROSTRUCTURE AND ELECTROPHYSICAL CHARACTERISTICS

Author(s):  
Vitaly A. Solodukha ◽  
Vladimir A. Pilipenko ◽  
Valentina A. Gorushko ◽  
A. N. Kupchishin ◽  
Fadei F. Komarov ◽  
...  
1992 ◽  
Vol 72 (5) ◽  
pp. 1833-1836 ◽  
Author(s):  
A. K. Pant ◽  
S. P. Murarka ◽  
C. Shepard ◽  
W. Lanford

2019 ◽  
Vol 8 (1) ◽  
pp. P35-P40 ◽  
Author(s):  
Haruo Sudo ◽  
Kozo Nakamura ◽  
Susumu Maeda ◽  
Hideyuki Okamura ◽  
Koji Izunome ◽  
...  

1994 ◽  
Vol 141 (11) ◽  
pp. 3200-3209 ◽  
Author(s):  
Charles D. Schaper ◽  
Mehrdad M. Moslehi ◽  
Krishna C. Saraswat ◽  
Thomas Kailath

1990 ◽  
Vol 29 (Part 2, No. 1) ◽  
pp. L137-L140 ◽  
Author(s):  
Hisashi Fukuda ◽  
Akira Uchiyama ◽  
Takahisa Hayashi ◽  
Toshiyuki Iwabuchi ◽  
Seigo Ohno

1987 ◽  
Vol 92 ◽  
Author(s):  
A. Usami ◽  
Y. Tokuda ◽  
H. Shiraki ◽  
H. Ueda ◽  
T. Wada ◽  
...  

ABSTRACTRapid thermal processing using halogen lamps was applied to the diffusion of Zn into GaAs0.6 P0.4:Te from Zn-doped oxide films. The Zn diffusion coefficient of the rapid thermal diffused (RTD) samples at 800°C for 6 s was about two orders of magnitude higher than that of the conventional furnace diffused samples at 800°C for 60 min. The enhanced diffusion of Zn by RTD may be ascribed to the stress field due to the difference in the thermal expansion coefficient between the doped oxide films and GaAs0.6P0.4 materials, and due to the temperature gradient in GaAs0.6P0 4 materials. The Zn diffusion coefficient at Zn concentration of 1.0 × l018 cm−3 was 3.6 × 10−11, 3.1 × 10−11 and 5.0 × 10−12 cm2 /s for the RTD samples at 950°C for 6 s from Zn-, (Zn,Ga)- and (Zn,P)-doped oxide films, respectively. This suggests that Zn diffusibility was controlled by the P in the doped oxide films.


Sign in / Sign up

Export Citation Format

Share Document