Intensive Cultivation of Dunaliella salina for Production of Biomass with Elevated β-carotene Content. Communication 1. Effect of Cultivation Factors

2015 ◽  
Vol 51 (3) ◽  
pp. 69-76
Author(s):  
A. V. Borovkov ◽  
I. N. Gudvilovich
1992 ◽  
Vol 4 (1) ◽  
pp. 11-15 ◽  
Author(s):  
Juan Luis Gómez-Pinchetti ◽  
Ziyadin Ramazanov ◽  
Agustín Fontes ◽  
Guillermo García-Reina

Antioxidants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 148 ◽  
Author(s):  
Yanan Xu ◽  
Patricia J. Harvey

Dunaliella salina is a rich source of 9-cis β-carotene, which has been identified as an important biomolecule in the treatment of retinal dystrophies and other diseases. We previously showed that chlorophyll absorption of red light photons in D. salina is coupled with oxygen reduction and phytoene desaturation, and that it increases the pool size of β-carotene. Here, we show for the first time that growth under red light also controls the conversion of extant all-trans β-carotene to 9-cis β-carotene by β-carotene isomerases. Cells illuminated with red light from a light emitting diode (LED) during cultivation contained a higher 9-cis β-carotene content compared to cells illuminated with white or blue LED light. The 9-cis/all-trans β-carotene ratio in red light treated cultures reached >2.5 within 48 h, and was independent of light intensity. Illumination using red light filters that eliminated blue wavelength light also increased the 9-cis/all-trans β-carotene ratio. With norflurazon, a phytoene desaturase inhibitor which blocked downstream biosynthesis of β-carotene, extant all-trans β-carotene was converted to 9-cis β-carotene during growth with red light and the 9-cis/all-trans β-carotene ratio was ~2. With blue light under the same conditions, 9-cis β-carotene was likely destroyed at a greater rate than all-trans β-carotene (9-cis/all-trans ratio 0.5). Red light perception by the red light photoreceptor, phytochrome, may increase the pool size of anti-oxidant, specifically 9-cis β-carotene, both by upregulating phytoene synthase to increase the rate of biosynthesis of β-carotene and to reduce the rate of formation of reactive oxygen species (ROS), and by upregulating β-carotene isomerases to convert extant all-trans β-carotene to 9-cis β-carotene.


Author(s):  
Yimei Xi ◽  
Fantao Kong ◽  
Zhanyou Chi

The unicellular alga Dunaliella salina is regarded as a promising cell factory for the commercial production of β-carotene due to its high yield of carotenoids. However, the underlying mechanism of β-carotene accumulation is still unclear. In this study, the regulatory mechanism of β-carotene accumulation in D. salina under stress conditions was investigated. Our results indicated that there is a significant positive correlation between the cellular ROS level and β-carotene content, and the maximum quantum efficiency (Fv/Fm) of PSII is negatively correlated with β-carotene content under stress conditions. The increase of ROS was found to be coupled with the inhibition of Fv/Fm of PSII in D. salina under stress conditions. Furthermore, transcriptomic analysis of the cells cultivated with H2O2 supplementation showed that the major differentially expressed genes involved in β-carotene metabolism were upregulated, whereas the genes involved in photosynthesis were downregulated. These results indicated that ROS induce β-carotene accumulation in D. salina through fine-tuning genes which were involved in photosynthesis and β-carotene biosynthesis. Our study provided a better understanding of the regulatory mechanism involved in β-carotene accumulation in D. salina, which might be useful for overaccumulation of carotenoids and other valuable compounds in other microalgae.


Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 635-641
Author(s):  
Bina J Mehta ◽  
Enrique Cerdá-Olmedo

Abstract Sexual interaction between strains of opposite sex in many fungi of the order Mucorales modifies hyphal morphology and increases the carotene content. The progeny of crosses of Phycomyces blakesleeanus usually include a small proportion of anomalous segregants that show these signs of sexual stimulation without a partner. We have analyzed the genetic constitution of such segregants from crosses that involved a carF mutation for overaccumulation of β-carotene and other markers. The new strains were diploids or partial diploids heterozygous for the sex markers. Diploidy was unknown in this fungus and in the Zygomycetes. Random chromosome losses during the vegetative growth of the diploid led to heterokaryosis in the coenocytic mycelia and eventually to sectors of various tints and mating behavior. The changes in the nuclear composition of the mycelia could be followed by selecting for individual nuclei. The results impose a reinterpretation of the sexual cycle of Phycomyces. Some of the intersexual strains that carried the carF mutation contained 25 mg β-carotene per gram of dry mass and were sufficiently stable for practical use in carotene production.


Author(s):  
Andrea Highfield ◽  
Angela Ward ◽  
Richard Pipe ◽  
Declan C. Schroeder

Abstract Twelve hyper-β carotene-producing strains of algae assigned to the genus Dunaliella salina have been isolated from various hypersaline environments in Israel, South Africa, Namibia and Spain. Intron-sizing of the SSU rDNA and phylogenetic analysis of these isolates were undertaken using four commonly employed markers for genotyping, LSU rDNA, ITS, rbcL and tufA and their application to the study of Dunaliella evaluated. Novel isolates have been identified and phylogenetic analyses have shown the need for clarification on the taxonomy of Dunaliella salina. We propose the division of D. salina into four sub-clades as defined by a robust phylogeny based on the concatenation of four genes. This study further demonstrates the considerable genetic diversity within D. salina and the potential of genetic analyses for aiding in the selection of prospective economically important strains.


1992 ◽  
Vol 73 (2) ◽  
pp. 178
Author(s):  
Yukiho Yamaoka ◽  
Osamu Takimura ◽  
Hiroyuki Fuse ◽  
Kazuo Kamimura ◽  
Eichi Manabe ◽  
...  

1946 ◽  
Vol 36 (2) ◽  
pp. 95-99 ◽  
Author(s):  
B. C. Ray Sarkar ◽  
K. C. Sen

1. With the object of determining the vitamin A value of carotene in different green fodders, an investigation has been undertaken to study (i) the relation between the chemically determined carotene and its biological activity as compared with that of standard carotene, (ii) the purity of apparent carotene from different sources, (iii) absorption of carotene in rats, and (iv) the relative efficiency of the standard carotene and preformed vitamin A.2. Biological tests have shown that the chemical method of assay is a fair index of the true carotene content in green fodders, and carotene in the form of an extract is quite as effective in the system as that present in the plant tissues. β-Carotene appears to be predominant in these materials.


Sign in / Sign up

Export Citation Format

Share Document