HEAT AND MASS TRANSFER IN EVAPORATING A TURBULENT LIQUID FILM FALLING ALONG A VERTICAL TUBE

Author(s):  
Saliha Senhaji ◽  
M'barek Feddaoui ◽  
Touria Mediouni ◽  
Rachid Mir
2015 ◽  
Vol 19 (5) ◽  
pp. 1529-1540
Author(s):  
Larbi Khalal ◽  
M’barek Feddaoui ◽  
Touria Mediouni

This paper deals with a computational study for analysing heat and mass exchanges in the evaporation of a turbulent binary liquid film (water-ethanol and water-methanol) along a vertical tube. The film is in co-current with the dry air and the tube wall is subjected to a uniform heat flux. The effect of gas-liquid phase coupling, variable thermophysical properties and film vaporization are considered in the analysis. The numerical method applied solves the coupled governing equations together with the boundary and interfacial conditions. The algebraic systems of equations obtained are solved using the Thomas algorithm. The results concern the effects of the inlet liquid Reynolds number and inlet film composition on the intensity of heat and mass transfer. In this study, results obtained show that heat transferred through the latent mode is more pronounced when the concentration of volatile components is higher in the liquid mixture .The comparisons of wall temperature and accumulated mass evaporation rate with the literature results are in good agreement.


Author(s):  
Y. Belkassmi ◽  
L. Elmaimouni ◽  
A. Rafiki ◽  
K. Gueraoui ◽  
N. Hassanain

The purpose of this paper is to investigate mass and heat transfer in the process of film condensation of vapor-air mixture for non-cryogenic fluids flow in a small vertical tube. A two-phase mathematical model is developed to model the mixture and liquid film. The governing equations for mixture and liquid-film have been resolved using a numerical method. Furthermore, this phenomenon analyzed is linked to a steady-state. Therefore, the development of numerical codes allows us to investigate the effect of implicated parameters on this phenomenon. Ethanol and methanol as non-cryogenic typical working fluids are realized for a good understanding of the heat and mass transfer mechanism during condensation. In this way, several effects of influencing parameters were examined. The predicted results showed a good agreement with experimental data.


1982 ◽  
Vol 47 (3) ◽  
pp. 766-775 ◽  
Author(s):  
Václav Kolář ◽  
Jan Červenka

The paper presents results obtained by processing a series of published experimental data on heat and mass transfer during evaporation of pure liquids from the free board of a liquid film into the turbulent gas phone. The data has been processed on the basis of the earlier theory of mechanism of heat and mass transfer. In spite of the fact that this process exhibits a strong Stefan's flow, the results indicate that with a proper definition of the driving forces the agreement between theory and experiment is very good.


2018 ◽  
Vol 194 ◽  
pp. 01007
Author(s):  
Maria V. Bartashevich

Mathematical model of conjugated heat and mass transfer in absorption on the entrance region of the semi-infinite liquid film of lithium bromide water solution is investigated for different values of Froude number. The calculations shown that larger values of Froude number corresponds to a smaller thickness of the falling film. It was demonstrated that for large values of the Froude number the heat transfer from the surface is greater than for smaller values.


2017 ◽  
Vol 110 ◽  
pp. 01087
Author(s):  
Maria V. Bartashevich ◽  
Maxim G. Vlasenko ◽  
Andrey A. Pil’nik ◽  
Andrey A. Chernov

Sign in / Sign up

Export Citation Format

Share Document