MODIFICATION OF THE NUCLEATE BOILING HYSTERESIS IN THE POOL BOILING OF FLUOROCARBONS

Author(s):  
Matthew D. Kelleher ◽  
Robert Egger ◽  
Yogendra K. Joshi ◽  
John R. Lloyd
Author(s):  
Kuiyan Xu ◽  
John R. Lloyd

The present research is an experimental study of pool boiling behavior of surfaces coated with thin porous layers. The fluid employed is FC-72, a highly-wetting dielectric perfluorocarbon with zero ozone-depletion potential (ODP). This creates the potential for electronic cooling application. Different surfaces, including the super-smooth surface (SSS), the High Flux™ surface (HFS), and the new electrochemical deposition surface (EDS) were tested, and the test results were compared. Both subcooled and saturated fluid pools were studied. The boiling hysteresis phenomenon was studied for these surfaces under different boiling conditions, which include the fluid bulk temperature and the non-boiling immersion time. Results of the study showed that the porous-coated surface dramatically enhanced the nucleate boiling heat transfer performance. The boiling hysteresis phenomenon is more prominent on porous-coated surfaces than on smooth surfaces, and subcooling can deteriorate this phenomenon.


Author(s):  
Harish Ganapathy ◽  
V. Emlin ◽  
Anant Narendra Parikh ◽  
V. Sajith

The pool boiling characteristics of nanofluids is affected by the interaction between the nanoparticles and the heater surface which forms a sorption layer and this layer increases the surface wettability and thereby enhances the CHF. While deteriorated nucleate boiling has been attributed to the decreased activation of cavities due to the increased wettability, it fails to explain the enhanced performance observed by several researchers, which can be explained only by an increase in surface roughness and hence a direct increase in the number of cavities, thereby compensating for the increase in wettability. Attempts to characterize the roughness of heater surfaces have been restricted to magnified visualizations and intrusive probing. No non-intrusive tests have been reported on flat heaters, which are ideal to conduct surface analyses. The present work is aimed at conducting a non-intrusive experimental study to analyse the surface roughness modification due to the sorption layer on flat plate heaters. Experiments have been carried out using electro-stabilized aluminium oxide water based nanofluids of different concentrations with heaters having varying values of surface roughness. The burn-out heat flux was measured and the effect of sedimentation time was studied. The surface-particle interaction parameter (Ra/dp) was varied to capture the phenomena of plugging as well as splitting of nucleation sites. An experiment having a high value of the interaction parameter shows enhanced boiling performance and that with a value close to 1 shows deteriorated performance. Further it was seen that this behaviour is dependent on the particle concentration. Detailed surface characterization has been done using an optical measurements setup and atomic force microscopy. Boiling on nano-coated heaters has been investigated and presented as an effective solution to counter the disadvantageous transient boiling behavior of nanofluids.


2000 ◽  
Vol 122 (4) ◽  
pp. 708-715 ◽  
Author(s):  
V. M. Wasekar ◽  
R. M. Manglik

Saturated nucleate pool boiling of aqueous surfactant solutions on a horizontal cylindrical heater has been experimentally investigated. Sodium dodecyl or lauryl sulfate (SDS or SLS), an anionic surfactant, is employed. Boiling performance, relative to that for pure water, is found to be enhanced significantly by the presence of SDS, with an early onset of nucleate boiling. An optimum level of enhancement is observed in solutions at or near critical micelle concentration of the surfactant; the enhancement, however, decreases considerably in higher concentration solutions. The dynamic surface tension measurements indicate a substantial influence of temperature on the overall adsorption isotherm. The diffusion kinetics of surfactant molecules and micelles is, therefore, expected to be quite different at boiling temperature than at room temperature. This greatly modifies the boiling mechanism that is generally characterized by the formation of smaller-size bubbles with increased departure frequencies, and a decreased tendency to coalesce which causes considerable foaming. [S0022-1481(00)00704-0]


2012 ◽  
Vol 550-553 ◽  
pp. 2913-2916 ◽  
Author(s):  
Jin Liang Tao ◽  
Xin Liang Wang ◽  
Pei Hua Shi ◽  
Xiao Ping Shi

In this paper, a new porous coating was formed directly on the surface of titanium metal via anodic oxidation. And by the SEM, the morphology of the coating, which is composed of well-ordered perpendicular nanotubes, was characterized. Moreover, taking deionized water as the test fluid, a visualization study of the coating on its pool boiling heat transfer performance was made. The results demonstrated that compared with the smooth surface, the nucleate boiling heat transfer coefficient can increase 3 times while the nucleate boiling super heat was reduced 30%.


Author(s):  
Muhamad Zuhairi Sulaiman ◽  
Masahiro Takamura ◽  
Kazuki Nakahashi ◽  
Tomio Okawa

Boiling heat transfer (BHT) and critical heat flux (CHF) performance were experimentally studied for saturated pool boiling of water-based nanofluids. In present experimental works, copper heaters of 20 mm diameter with titanium-oxide (TiO2) nanocoated surface were produced in pool boiling of nanofluid. Experiments were performed in both upward and downward facing nanofluid coated heater surface. TiO2 nanoparticle was used with concentration ranging from 0.004 until 0.4 kg/m3 and boiling time of tb = 1, 3, 10, 20, 40, and 60 mins. Distilled water was used to observed BHT and CHF performance of different nanofluids boiling time and concentration configurations. Nucleate boiling heat transfer observed to deteriorate in upward facing heater, however; in contrast effect of enhancement for downward. Maximum enhancements of CHF for upward- and downward-facing heater are 2.1 and 1.9 times, respectively. Reduction of mean contact angle demonstrate enhancement on the critical heat flux for both upward-facing and downward-facing heater configuration. However, nucleate boiling heat transfer shows inconsistency in similar concentration with sequence of boiling time. For both downward- and upward-facing nanocoated heater's BHT and CHF, the optimum configuration denotes by C = 400 kg/m3 with tb = 1 min which shows the best increment of boiling curve trend with lowest wall superheat ΔT = 25 K and critical heat flux enhancement of 2.02 times.


Author(s):  
Vijaykumar Sathyamurthi ◽  
Debjyoti Banerjee

Heat transfer in subcooled pool boiling on nano-textured surfaces is reported in this study. Silicon wafers coated with Multiwalled Carbon Nanotubes (MWCNT) forests 9 microns (Type-A), and 25 microns (Type-B) in height and 8–15 nm in diameter with a randomized pitch of 16–30 nm, form the test surfaces. The test fluid is a fluoroinert (PF-5060, Manufacturer: 3M Co.) with a boiling point of 56°C. The test rig is of the constant heat flux type. Heat transfer enhancement of approximately 1.3 to 32% is observed in the nucleate boiling regime for Type-A at subcooling levels of 20°C. Type-B CNT shows an enhancement of about 13–30% in the nucleate boiling regime for 20°C subcooling. Digital images acquired during the tests show increased nucleation occurring on surfaces coated with MWCNT. Potential factors that could explain the observed heat transfer enhancement are: the enhanced surface area (nano-fin effect), disruption of the “microlayer” region in nucleate boiling, an increase in the size of cold-spots and the high thermal conductivity of MWCNT.


Author(s):  
Bao H. Truong

Nanofluids are engineered colloids composed of nano-size particles dispersed in common fluids such as water or refrigerants. Using an electrically controlled wire heater, pool boiling Critical Heat Flux (CHF) of Alumina and Silica water-based nanofluids of concentration less than or equal to 0.1 percent by volume were measured. Silica nanofluids showed a CHF enhancement up to 68% and there seems to be a monotonic relationship between the nanoparticle concentration and the magnitude of enhancement. Alumina nanofluids had a CHF enhancement up to 56% but the peak occurred at the intermediate concentration. The boiling curves in nanofluid were found to shift to the left of that of water and correspond to higher nucleate boiling heat transfer coefficients in the two-phase flow regime. Scanning Electron Microscopy (SEM) images show a porous coating layer of nanoparticles on wires subjected to nanofluid CHF tests. These coating layers change the morphology of the heater’s surface, and are responsible for the CHF enhancement. The thickness of the coating was estimated using SEM and was found ranging from 3.0 to 6.0 micrometers for Alumina, and 3.0 to 15.0 micrometers for Silica.


2003 ◽  
Vol 125 (6) ◽  
pp. 1087-1095 ◽  
Author(s):  
H. Louahlia-Gualous ◽  
P. K. Panday ◽  
E. A. Artioukhine

This article treats the local heat transfer for nucleate pool boiling around the cylinder using the inverse heat conduction analysis. The physical model considers a half section of a cylinder with unknown surface temperature and heat flux density. The iterative regularization and the conjugate gradient methods are used for solving the inverse analysis. The local Nusselt number profiles for nucleate pool boiling are presented and analyzed for different electric heat. The mean Nusselt number estimated by IHCP is closed with the measured values. The results of IHCP are compared to those of Cornewell and Houston (1994), Stephan and Abdelsalam (1980) and Memory et al. (1995). The influence of the error of the measured temperatures and the error in placement of the thermocouples are studied.


1999 ◽  
Author(s):  
K. N. Rainey ◽  
S. M. You

Abstract The present research is an experimental study of “double enhancement” behavior in pool boiling from heater surfaces simulating microelectronic devices immersed in saturated FC-72 at atmospheric pressure. The term “double enhancement” refers to the combination of two different enhancement techniques: a large-scale area enhancement (square pin fin array) and a small-scale surface enhancement (microporous coating). Fin lengths were varied from 0 (flat surface) to 8 mm. Effects of this double enhancement technique on critical heat flux (CHF) and nucleate boiling heat transfer in the horizontal orientation (fins are vertical) are investigated. Results showed significant increases in nucleate boiling heat transfer coefficients with the application of the microporous coating to the heater surfaces. CHF was found to be relatively insensitive to surface microstructure for the finned surfaces except in the case of the surface with 8 mm long fins. The nucleate boiling and CHF behavior has been found to be the result of multiple, counteracting mechanisms: surface area enhancement, fin efficiency, surface microstructure (active nucleation site density), vapor bubble departure resistance, and re-wetting liquid flow resistance.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Michel Speetjens

Pool-boiling serves as the physical model problem for electronics cooling by means of phase-change heat-transfer. The key for optimal and reliable cooling capacity is better understanding of the conditions that determine the critical heat-flux (CHF). Exceeding CHF results in the transition from efficient nucleate-boiling to inefficient film-boiling. This transition is intimately related to the formation and stability of multiple (steady) states on the fluid-heater interface. To this end, the steady-state behavior of a three-dimensional pool-boiling system has been studied in terms of a representative mathematical model problem. This model problem involves only the temperature field within the heater and models the heat exchange with the boiling medium via a nonlinear boundary condition imposed on the fluid-heater interface. The steady-state behavior is investigated via a bifurcation analysis with a continuation algorithm based on the treatment of the model with the method of separation of variables and a Fourier-collocation method. This revealed that steady-state solutions with homogeneous interface temperatures may undergo bifurcations that result in multiple solutions with essentially heterogeneous interface temperatures. These heterogeneous states phenomenologically correspond with vapor patches (“dry spots”) on the interface that characterize transition conditions. The findings on the model problem are consistent with laboratory experiments.


Sign in / Sign up

Export Citation Format

Share Document