NUMERICAL SIMULATION AND FUNDAMENTAL CHARACTERISTICS OF SURFACE FLOW GENERATED BY BUBBLY FLOWS

2018 ◽  
Vol 45 (3) ◽  
pp. 263-282 ◽  
Author(s):  
Hassan Abdulmouti
2014 ◽  
Vol 7 (2) ◽  
pp. 83-92 ◽  
Author(s):  
J. Fernández-Pato ◽  
P. García-Navarro

Abstract. The most commonly used hydraulic network models used in the drinking water community exclusively consider fully filled pipes. However, water flow numerical simulation in urban pipe systems may require to model transitions between surface flow and pressurized flow in steady and transient situations. The governing equations for both flow types are different and this must be taken into account in order to get a complete numerical model for solving dynamically transients. In this work, a numerical simulation tool is developed, capable of simulating pipe networks mainly unpressurized, with isolated points of pressurization. For this purpose, the mathematical model is reformulated by means of the Preissmann slot method. This technique provides a reasonable estimation of the water pressure in cases of pressurization. The numerical model is based on the first order Roe's scheme, in the frame of finite volume methods. The novelty of the method is that it is adapted to abrupt transient situations, with subcritical and supercritical flows. The validation has been done by means of several cases with analytic solutions or empirical laboratory data. It has also been applied to some more complex and realistic cases, like junctions or pipe networks.


2005 ◽  
Author(s):  
S H Sadathosseini ◽  
◽  
S M Mousaviraad ◽  
M H Sadr ◽  
◽  
...  

APAC 2019 ◽  
2019 ◽  
pp. 619-625
Author(s):  
Xizeng Zhao ◽  
Zhijian Yang ◽  
Songchang Duan ◽  
Bijin Liu

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Gang Yu ◽  
Dong Li ◽  
Yue Shu ◽  
Zeyu Zhang

The engine/airframe interaction effects of the BWB300 on aerodynamic performances were analyzed by using the numerical simulation method. The BWB300 is a 300-seat Blended Wing Body airplane designed by the Airplane Concept Design Institute of Northwestern Polytechnical University. The engine model used for simulation was simplified as a powered nacelle. The results indicated the following: at high speed, although the engine/airframe interaction effects on the aerodynamic forces were not significant, the airframe’s upper surface flow was greatly changed; at low speed, the airframe’s aerodynamic forces (of the airplane with/without the engine) were greatly different, especially at high attack angles, i.e., the effect of the engine suction caused the engine configuration aerodynamic forces of the airframe to be bigger than those without the engine; and the engine’s installation resulting in the different development of flow separation at the airframe’s upper surface caused greater obvious differences between the 2 configurations at high angles and low speed. Moreover, at low-speed high attack angles, the separated flow from the blended area caused serious distortion at the fan inlet of the engine.


Author(s):  
Aggelos S. Dimakopoulos ◽  
Athanassios A. Dimas

The numerical simulation of the two-dimensional free-surface flow resulting from the propagation of nonlinear gravity waves over constant-slope bottom is presented. The simulation is based on the numerical solution of the Euler equations subject to the fully nonlinear free-surface boundary conditions and the appropriate bottom, inflow and outflow conditions using a hybrid finite-differences and spectral-method scheme. Wave breaking is accounted for by a surface roller model. The formulation includes a boundary-fitted transformation and is suitable for future extension to incorporate large-eddy and large-wave simulation terms. Results are presented for the simulation of the free-surface flow over two different bottom topographies, with constant slope values of 1:10 and 1:50, and three different inflow wave heights. Over the bottom slope, waves of small wave heights are modified according to linear theory. For nonlinear waves, wavelengths are becoming shorter, the free surface elevation deviates from its initial sinusoidal shape and wave heights increase with decreasing depth. Breaking is observed for the cases with the larger initial wave height and the smaller outflow depth.


Sign in / Sign up

Export Citation Format

Share Document